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Heterogeneous origami-architected materials with
variable stiffness
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Takahiro Kunimine 6, Jordan R. Raney 2 & Jinkyu Yang1✉

Origami, the ancient art of paper folding, has shown its potential as a versatile platform to

design various reconfigurable structures. The designs of most origami-inspired architected

materials rely on a periodic arrangement of identical unit cells repeated throughout the whole

system. It is challenging to alter the arrangement once the design is fixed, which may limit the

reconfigurable nature of origami-based structures. Inspired by phase transformations in

natural materials, here we study origami tessellations that can transform between homo-

geneous configurations and highly heterogeneous configurations composed of different

phases of origami unit cells. We find that extremely localized and reprogrammable hetero-

geneity can be achieved in our origami tessellation, which enables the control of mechanical

stiffness and in-situ tunable locking behavior. To analyze this high reconfigurability and

variable stiffness systematically, we employ Shannon information entropy. Our design and

analysis strategy can pave the way for designing new types of transformable mechanical

devices.
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Materials with reprogrammable properties have attracted
the continued interest of researchers in a wide range of
fields, such as materials science, physics, and engi-

neering. This is not only due to the rich physics of these repro-
grammable materials, but also because of the great potential for
engineering applications enabled by their in situ control of
material properties in unprecedented ways1,2. In recent years, by
mimicking such material behavior, reconfigurable mechanical
structures have been developed at the macroscopic level. Their
programmable shape changes can be implemented by leveraging
the reconfigurability of the constituent architectures. For exam-
ple, recent studies have shown highly transformable morpholo-
gical properties by employing origami/kirigami3–8, compliant
mechanisms9–11, and inflatable structures12–14.

Such reconfigurable mechanical structures can also offer tun-
able mechanical properties (e.g., stiffness15,16, wave guide17–19,
etc) associated with their deformation. However, reconfigurability
in mechanical systems usually achieves versatility at the sacrifice
of structural rigidity. Recently, origami-based structures with self-
locking behavior have shown significant enhancement of load-
bearing capabilities depending on their folded configurations3,20.
Such an origami structure shows flexible folding motions without
deforming each surface in a limited folding range. Once the
structure reaches its locking point, it exhibits high rigidity due to
the contact between its surfaces and creases.

In previous studies, high stiffness has been achieved either by
the collision of vertices in the waterbomb origami21 or by
employing Miura-ori to induce self-locking3,20,22. Although
such stiffening response can be achieved without modifying
predefined design parameters, once this stiffening response is
implemented in the design, it is extremely difficult to remove
this feature after fabrication. This implies that the foldable range
is always limited significantly by introducing the stiffening
property.

Here, we study a reconfigurable 3D origami structure with
reversible stiffness control induced by the vertex contact within
the structure. We analytically and experimentally demonstrate
the vertex contact and thus the stiffening of this origami structure
from the level of a unit cell to a multicell tessellation. From
the unit cell analysis, we show that our origami unit cell can be
transformed into multiple phases: a self-contacting configuration
with a rapid increase of its stiffness, and flexible configurations in
which self-contact nature is completely removed throughout the
entire folding range. Then, we build a 3D space-filling origami
tessellation, which inherits the transformability of the unit cell.
Interestingly, we find that the origami tessellation can support not
only homogeneous configurations (i.e., all unit cells are in the
identical phase, which exhibits the same folding motion within
the tessellation), but also highly heterogeneous configurations
(i.e., different phases of origami unit cell coexist in the same
tessellation while maintaining its reconfigurability) by virtue of
phase transformation. This extrinsic heterogeneity proffers rich
morphology changes as well as finely controllable stiffness in the
self-contact regime, which has been extremely challenging,
especially after assembly, as mentioned earlier.

The versatile conversion between homogeneous and hetero-
geneous states in origami is phenomenologically analogous to
the structural phase transformation of the crystal structure.
In a metal alloy, for example, the change in the crystal structure
induces its material property change. Similarly, the shape
change of unit cells induces the variations of its mechanical
property—specifically variable and reversible stiffness—in our
origami tessellation. This hints that the design principles of our
heterogeneous origami tessellations could open the broader pos-
sibility of new programmable mechanical structures and materials.

Results
Unit cell analysis. We start by demonstrating the transformable
nature of our origami unit cell structure by characterizing its geo-
metry. Our origami unit cell consists of two flat sheets folded, whose
crease patterns are defined by the length parameters (l,m, d) and
angle (α) (see Fig. 1a). The crease lines are folded according to
mountain and valley folds denoted in Fig. 1a. The upper and lower
sheets are bonded together such that the outer rims denoted as red
solid lines are always aligned and in contact during the folding
behavior (see Methods, Supplementary Note 3, and Supplementary
Fig. 5 for the detail of the actual prototyping using the paper sheet).
Starting from the flat state, by selecting appropriate crease lines to be
used, we obtain three different resultant shapes of the unit cell. If all
crease lines are used, the unit cell is folded into the Tachi-Miura
polyhedron23,24 (TMP; red-colored unit cell in Fig. 1b). Interestingly,
if some of the crease lines are kept flat, the unit cell can be folded into
two additional phases, the origami tubes (OTs) (see blue and green-
colored unit cells in Fig. 1b). For instance, selecting green lines as a
flat crease results in the blue-colored unit cell in Fig. 1b, and the same
for the blue lines in the green-colored unit cell, but with the opposite
tilted angle (see Supplementary Movie 1 for folding motions of each
configuration). Therefore, we obtain three different phases: one TMP
and two OT phases.

To analyze the folding motion of each phase closely, we introduce
the folding angles θM and θS defined as half of the angle between
adjacent surfaces connected by the horizontal and inclined creases,
respectively (see Fig. 1b and Supplementary Fig. 1). Note that these
angles can be obtained from one another (see Supplementary Note 1
and Supplementary Fig. 1). To characterize three different phases
(TMP and OTs), we use θS1 and θS2 specifically for the blue and
green inclined crease lines in Fig. 1a-b. Note that θS1 (or θS2) is
constant at π/2, if corresponding inclined creases are kept flat. We
refer to the above two OT configurations as OT(+) if θS1= π/2 and
OT(−) if θS2= π/2. While the TMP configuration obtained from this
crease pattern has been studied in previous research23,24, this
transformation into the OT configurations has not yet been reported.
Also, such phase transformation is achieved while each transformed
unit cell maintains the rigid foldable behavior, i.e., deformation takes
place only along the crease lines.

Figure 1c shows the folding paths of TMP and OT unit cells in
the configuration space as a function of the folding ratio
(γ= 1− θM/(π/2)) and angle difference (θS1− θS2). The design
parameters used in this analysis are (l,m, d, α)= (30, 30, 30, 65°).
The TMP exhibits its folding motion along θS1− θS2= 0, whereas
the folding motion of the OT(+) (OT(−)) unit cell takes place in
the positive (negative) θS1− θS2 regime as the structure is
folded from its flat state (γ= 0; please see Supplementary Fig. 2
for the posture of the unit cell and the corresponding γ). By
modeling the creases as a linear torsion spring, we plot the energy
landscape for each configuration along its folding path (Fig. 1c; see
also Supplementary Note 1 and Supplementary Fig. 3 for the detail
of the energy calculation). We find a minimum energy state for
each configuration, which means that there are three stable states.

Next, we examine the kinematics of origami unit cells,
specifically TMP and OT(+). Figure 1d shows the folding motions
of TMP and OT(+) phases for two different l values: l= 22.5 (in
the front) and l= 30 (in the back), while the other parameters
(m, d, α) being kept consistent with the aforementioned analysis. If
l= 30, both the TMP and OT(+) can be folded from a flat state
(γ= 0) to another flat state in the 1–2 plane (γ= 1). However, if
l= 22.5 is chosen, the TMP exhibits the contact between some of
its vertices (denoted by the dashed circle in TMP at γ= 0.62; see
also Supplementary Fig. 4 for closeup illustration), in sharp
contrast to the OT configuration that shows the complete folding
motion observed for l= 30. Therefore, the further folding in TMP
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can be halted due to this vertex contact, which can lead to the
stiffening response.

We analyze this self-contacting behavior by considering the vertex
spacing w as shown in Fig. 2a. Based on the geometry of the TMP
and OT, we analytically obtain this vertex spacing (see Supplemen-
tary Note 2 for the derivation detail). In particular, for the TMP
phase (i.e., θS1= θS2= θS), the vertex spacing is expressed as

w
d
¼ �2ðλþ μÞ þ cot αþ 4μsin2αcos2θS; ð1Þ

where λ= l/d and μ=m/d are nondimensional design parameters
for center and side lengths. Note that θS is calculated from θM. Then,
by considering w/d= 0, we obtain the critical folding ratio (γc) at
which the vertex contact occurs as follows:

θS;c ¼ cos�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 λþ μ
� �� cot α

4μsin2α

s2
4

3
5; ð2Þ

if

λ≤
1
2
cot α� μ cos 2α: ð3Þ

See Supplementary Note 2 for more detail. Note that the critical
folding angle (γc) can be calculated from this critical folding angle θS,c.
To build a physically valid origami structure, we also require

1
2
cot α≤ λ: ð4Þ

By imposing these conditions on our analysis, we explore the self-
contacting behavior of our origami unit cells.

Figure 2a shows the normalized vertex spacing w/d as a
function of the folding ratio γ for TMP and OT(+) phases. Our
analysis shows that w becomes zero if the TMP is folded to
γ= 0.62, which indicates that two vertices (denoted as blue dots
in Fig. 2a) are in contact. On the contrary, the OT(+) phase
shows nonzero w throughout the whole folding motion.

We further explore various designs of our origami unit cell
for the self-contacting behavior, particularly its tailorable
critical contact point. Figure 2b shows the tunable critical
folding ratio (γc) denoted by the color intensity in the three-
dimensional design space (λ, μ, α). In this figure, the black dashed
curves indicate the boundaries obtained from Eq. (3). For
example, the value of γC decreases as we increase μ or α,
which means that the self-contact can be triggered in an earlier
folding stage. The gray-colored areas indicate the invalid
design parameters (i.e., origami cannot be built physically) as
expressed mathematically by Eq. (4). Note that both blue-
and green-colored regions are a noncontacting design, but
blue areas yield re-entrant TMP with a negative Poisson’s
ratio. While such re-entrant TMP is collapsible in the 3-axis
direction (which is the direction of our primary interest in
this study), it can provide load-bearing capability in the
two-axis direction due to the auxeticity (see ref. 25 for more
details).

Given the kinematic analysis and design space for the self-
contacting unit cell, we now explore the static response of TMP and
OT phases to verify the stiffening response induced by the vertex
contact. We conduct the uniaxial compression test along the 3-axis
by fabricating prototypes made of paper. The design parameters
used in this test are (l,m, d, α)= (22.5, 30.0, 30.0, 65°), which gives a
critical folding ratio of γc= 0.62 (see Methods and Supplementary
Note 3 for details). In Fig. 2c, we show experimentally measured
force-displacement curves for the TMP (red solid line) and OT(+)
(green). Here, we clearly observe that the TMP phase exhibits a
drastic increase of the force after the predicted contact point, while
the force profile remains plateau for the OT(+) phase even after the
contact point.

To further analyze this behavior, we employ a torsion spring
model of the TMP unit cell in which its crease lines are modeled
as a linear torsion spring (with spring constant kθ). We fit the
model function to the experimental results (see the black dash-
dotted curve in Fig. 2c). Note that this model provides the
analytical force solely based on the folding angle changes
regardless of the vertex contact. Thus, this model expresses the
experimentally measured force curve very well up to the predicted
critical point, but it starts to deviate drastically from the
experiment result after the the vertices make contact.

With this deviation being revealed, we now introduce a
repulsive force field to model the stiffness increase within the
post-contact regime26,27, such that the total force is now
Ftotal= F+ frepulsive where F is the force from the conventional
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Fig. 1 Reconfigurable rigid origami structure. a The flat crease patterns of
the origami unit cell, and b three possible phases: TMP, OT(−) and OT(+).
When crease lines denoted by blue (green) color are forced to be flat, unit
cell is folded into OT(+) (OT(−)). c Reconfigurable behavior is shown in the
configuration space. Energy landscape for each configuration is plotted along
its folding path. The geometrical parameters are
(l,m, d, α)= (30, 30, 30, 65°) (see Supplementary Note 1 for the detail of the
energy calculation). d Folding motion of TMP and OT(+) with l= 30 (back)
and l= 22.5 (front). The other parameters are the same as those in c.
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torsion spring model. We assume the force field of the form,

f repulsive ¼
0 ðu<ucÞ
keπ
4δ20

N πðδ0 � δðuÞÞ � 2δ0 cot
πδðuÞ
2δ0

� �h i
dδ
du ðu≥ ucÞ

(

ð5Þ
where u is the displacement in axis-3 direction, uc is the critical
displacement where the vertex contact occurs, δ(u)= w(θS(u))−
w(H0), δ0= δ(uc), N is the number of layers, H0 is the initial
height of the unit cell (Nd), and ke is the magnitude of the virtual
potential. The derivative dδ

du can be evaluated using the relation-
ships Eq. (1) and θM ¼ sin�1 1� u

Nd

� �
. This force guarantees the

C1 continuity, given that frepulsive= 0 and d
du f repulsive ¼ 0 at u= uc.

For more detail of the derivation, please refer to Supplementary
Note 2.

We again fit the modified model to the curve obtained from the
experiment. The dashed line in Fig. 2c shows the modified model
function with two fitted parameter kθ and ke. We can see that
modified model collapses with the conventional torsion spring
model until the theoretically predicted critical point, and start to
deviate by following the experimental result within the post-
contact regime.

Experimental demonstration of stiffness variation. Based on the
unit cell analysis above, we demonstrate very fine tunable stiffness
induced by the vertex collision, by building an origami tessella-
tion. Here, an origami tessellation can be designed through two
different assembly approaches: close-packed and square

assemblies (see Supplementary Note 4, Supplementary Figs. 8-
10). In this study, we employ the close-packed assembly to build a
prototype of 3 × 3 tessellation, which can transform into different
configurations. Figure 3a shows four exemplary configurations
composed of different numbers of the TMP unit cells: (i)
nTMP= 0, (ii) 3, (iii) 6, and (iv) 9 (see Supplementary Fig. 6
for other examples of possible configurations and Supple-
mentary Movie 2 for the transformations between these four-
configurations). In addition to these four configurations,
this 3 × 3 tessellation can transform into 32 different configura-
tions composed only of TMP and OT(+) phases (e.g.,
see the bottom right illustrations in Fig. 3a for some of the
examples). The number of possible transformation patterns
increases as we increase the total number of origami unit cells
constituting a tessellation (see Supplementary Note 5 and Sup-
plementary Fig. 11).

We then conduct uniaxial compression tests on these
transformed patterns to study how this structural morphology
changes the mechanical properties of our origami, specifically
stiffness in the 3-axis direction (see Methods, Supplementary
Note 3, and Supplementary Fig. 7 for the detail). Figure 3b shows
the experiment results for four different configurations, which
correspond to the configuration i–iv, transformed from the same
design. These four configurations initially show a similar static
response, but after the critical point, we observe drastically
different evolution of force among different configurations. In
particular, the slope of each force curve in the post-contact
regime increases as the number of self-contacting TMP cells
increases.

Invalid config. Invalid config.
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Fig. 2 Origami unit cell with self-contacting vertices. a We examine the vertex spacing (w) of the (red) TMP and (green) OT(+) unit cells with
(l,m, d, α)= (22.5, 30.0, 30.0mm, 65°). b The 3D diagram shows the tunability of the contact point altered by the design parameters. The dashed curves
indicate the boundary between rigid foldable without contacting vertex configurations (green and blue-colored areas) and self-contact regimes (color
intensity represents the critical contact points) bounded by Eq. (3). Here, the blue-colored regions indicate a foldable configuration without self-contact,
but with load-bearing capability due to auxetic behavior25. The grey colored areas indicate the invalid design parameters. The inset illustrations show TMP
unit cells with α= 45° (green: noncontacting regime) and α= 65° (blue: No self-contact, but load-bearing capability) at λ= μ= 1.2. c Compression test on
the TMP and OT unit cell prototypes. The black vertical line indicates the prediction of a critical contact point from Eq. (2). We approximate the force-
displacement curve for the TMP by using two models: the torsion spring origami model, in which the crease lines of the TMP are modeled as a torsion
spring, whose spring constant is kθ= 43.99 Nrad−1 (dash-dotted line); the modified torsion spring model with the repulsive force field to model the vertex
contact (dashed line), whose constants are kθ= 43.99 Nrad−1 and ke= 8.889 × 104 Nm.
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To quantify this variation, we extract the slope via linear
regression using the least-squares approach (denoted as a dashed
line in Fig. 3b), and plot it as a function of the number of TMP
unit cells (n) as shown in Fig. 3c. Let Kn and kn be the slope
obtained from post-contact and rigid folding regimes, respec-
tively. We measure Kn and kn by considering eight different
transformed configurations, including the four patterns above
(i.e., nTMP= 0, 2, 3, 4, 5, 6, 7, 9; see Supplementary Note 3 for
more detail). In Fig. 3c, the slope values normalized by k0 are
shown. In the rigid folding regime, these transformed patterns
show very similar slope levels regardless of nTMP. In the contact
regime, however, we clearly observe the significant changes of
the slope value depending on the number of TMP cells. Although
the static response after a critical point is difficult to control at the
unit cell level due to nonrigid origami behavior, this tessellation
analysis demonstrates the feasibility of highly tunable bulk
material properties induced by phase transformation of the
origami tessellation (see conceptual illustration in Supplementary
Fig. 15 for this highly tunable bulk stiffness).

Shannon information entropy. The fine tunable self-contacting
behavior is achieved due to transformation between different
configurations. More specifically, the finely programmable
mechanical property (i.e., stiffness in the current study) is
dependent upon the number of configurations that the tessella-
tion can achieve. Therefore, it is crucial that we identify how the
tessellation changes its shape, regardless of which mechanical
property we would tune. To quantify this unique morphological
transformability of the origami tessellation, we characterize these
various transformed configurations as geometrically stored
information28. Here, we employ the Shannon information
entropy S to quantify the geometric information capacity (i.e.,
number of configurations). Even if we use the same numbers of
TMP and OT(+/−) cells, the tessellation can take multiple dif-
ferent transformable configurations. Let ρTMP be the TMP density
for a N ×N tessellation defined by ρTMP= nTMP/N2, the infor-
mation capacity is calculated as SðρTMPÞ ¼ log bWðρTMPÞ where

W(ρTMP) is the number of possible configurations for a given
TMP density ρTMP. Also, b= 3 is chosen in this study because our
origami unit cell can transform into three phases, which means
that if S > 1, the information capacity of a tessellation is greater
than that of a single unit cell component.

Figure 4a shows the Shannon entropy change for two-phase
only configurations (TMP and OT(+)) of a 5 × 5 tessellation, i.e.,
OT(−) density is zero (ρOT(−)= nOT(−)/52= 0). All TMP (or all
OT(+)) tessellation has only one possible configuration so that
the Shannon entropy is zero. As ρTMP approaches 0.5, the
Shannon entropy value becomes large (here we define large
entropy state of our origami structure as S > 3), which means that
multiple different geometrical configurations can be obtained
even if we use the same number of TMP cells in the tessellation
(see the inset illustrations in the dashed box in Fig. 4a). Therefore,
the large Shannon entropy combinations can store more
information geometrically in an origami tessellation compared
to its unit cell component itself.

We then extend this entropy calculation to the three-
component system in the same setting of the 5 × 5 tessellation.
In Fig. 4c, we map the calculation results to a ternary diagram in
which the color intensity of each hexagonal marker represents the
Shannon information value S as a function of three different
density variables: TMP density (ρTMP), OT(+) density (ρOT(+)),
and OT(−) density (ρOT(−)). Similar to the two-phase configura-
tions, as we discussed above, the origami tessellation can
transform into various heterogeneous configurations ranging
from small Shannon entropy to large Shannon entropy regimes,
as well as zero-entropy homogeneous configurations (see
Supplementary Movie 3 for the folding motion of heterogeneous
origami tessellations). In particular, three different phases can be
embedded in the same tessellation (see the dashed box for three-
phase combinations, which are close to the center of the ternary
diagram). Note that conventional rigid origami (e.g., all TMP
tessellation) without transformation typically has only a single
folding configuration, i.e., zero Shannon entropy. As demon-
strated here, the reconfiguration from zero to large entropy
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Fig. 3 Origami tessellation with in situ tunable self-contacting vertices. a 3 × 3 close-packed assembly can transform from its flat state into multiple
configurations containing different numbers of TMP cells nTMP (red-colored cells): (i) nTMP= 0, (ii) nTMP= 3, (iii) nTMP= 6, and (iv) nTMP= 9 (all TMP
configuration). In addition to these four configurations, the lower right inset illustrations show other possible transformed shapes. The inset photographs
with scale bar of 100 mm show our paper prototypes of their corresponding configuration. b Experimentally measured force-displacement relationships for
the above four configurations. The force is normalized by the torsion spring constant obtained from the unit cell compression test (Fig. 2b), and the
displacement is normalized by the initial height of the prototype before compression is applied. We extract the slope of each force curve in the rigid folding
and contact regimes (see the dashed lines). c The values of slope in the rigid folding regime (kn) and contact regime (Kn) are plotted as a function of the
number of TMP cells (nTMP) contained in the tessellation. The slope is normalized by k0, i.e., no TMP case.
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combinations without redesigning the system is the unique
feature of our origami tessellation.

Interestingly, our analysis reveals the so-called “no configura-
tion regime” (i.e., empty area enclosed by the black dashed lines
in the ternary diagram in Fig. 4c) bounded by the small entropy
combinations. In this regime, there is no possible configuration
due to the geometrical constraints among the three phases in the
same tessellation. One of the natural questions here is whether
there is a way to access this forbidden area. Here, we consider one
potential approach to answering this question by introducing an
additional phase of the origami unit cell, specifically a defect
phase with zero volume (see Supplementary Note 6 and
Supplementary Fig. 12 for more details). For example, if we
introduce two defect cells in a tessellation, it can enable the
formation of OT(−) phase surrounded by TMP and OT(+) cells
(see the left inset illustration “Introduce defects” in Fig. 4c). Also,
if multiple defect cells are introduced, a two-phase configuration
composed of only OT(+) and OT(−) cells can be obtained (see
the left inset illustration “Multi-defect phase” in Fig. 4c), which is
not allowed in the original three-component origami tessellation
(See Supplementary Note 6 and Supplementary Fig. 13 for
more details; see also Supplementary Movie 4 for its folding
motion).

Discussion
In conclusion, we have analytically and experimentally demonstrated
reconfigurable self-contacting behavior of a volumetric origami unit
cell, which arises from its multi-transformable nature. Our unit cell
analysis results have revealed highly tailorable self-contacting beha-
vior, specifically tunable contact points and switching between con-
tacting and noncontacting configurations. At a multicell level, we
have designed origami tessellations transformable between multiple
configurations, and we have shown the in situ tunable static response
of our origami tessellation by controlling the number of contacting
origami cells within the tessellation. Along with the experimental
demonstration, we have systematically analyzed the transformability
of the tessellation by quantifying the heterogeneity using the Shannon
information entropy. Unlike existing materials composed of multiple
elements (e.g., recently proposed high-entropy alloys29,30 typically
consist of five or more principal elements), our origami tessellation

can alter its mixing ratio of different elements via multiphase
transformability, even after being manufactured. Our design and
analysis strategies suggest a new approach for designing high- and
variable-entropy materials with in situ reconfigurability. In analogy to
conventional alloys that use multiple elements, our origami also
allows intrinsic heterogeneity, in which different unit cell designs can
be implemented in a tessellation. This further widens the design
freedom of our origami, for instance, with the multistep vertex
contact introduced (see Supplementary Note 7 and Supplementary
Fig. 14 for more detail. See also Supplementary Movies 5 and 6 for
the folding motions of intrinsic heterogeneous designs.). Our findings
have great potential not only for engineering applications, such as
deployable space structures, reconfigurable robots, and surgical
medical devices, but also for physics platforms to explore analogous
material-level phenomena at a macroscopic scale, which can provide
new insight in various research areas.

Methods
Fabrication and experiments. The TMP unit cell is folded according to the crease
pattern as shown in Fig. 1a. For the actual prototype, we replace the crease lines
with the compliant mechanism and create the laser cutting pattern. The laser
cutting pattern is then cut from a paper sheet (3-ply Strathmore 500 Series Bristol
Board), which is thick enough to fulfill the rigid foldable condition, using the laser
cutter (Universal Laser Systems, Inc. VLS4.60). To assemble upper and lower sheets
(see Fig. 1a) into the unit cell, we use the adhesive sheet (Grafix Double Tack
Mounting Film) on the small triangular adhesive areas (see Supplementary Note 3
for the detail). The constructed unit cell is then fused into a 3 × 3 tessellation to
form a complete tessellation using the same adhesive sheet used for the unit cell
assembly. The design parameters of l= 22.5 mm, m= 30.0 mm, d= 30.0 mm,
and α= 65° (equivalent to λ= 0.75, μ= 1.0) are chosen. The fabricated unit cell
and tessellation are then loaded under the uniaxial compression test. Each pro-
totype is compressed for 60 mm along the third axis controlled by a linear
stage (Velmex, Inc. Bislide motorized linear stage MN10), and force is measured
through the load cell (Kyowa Compact Tension/Compression Load Cell LUX-B-
50N-ID).

Data availability
Data supporting the findings of this study are available from the corresponding author
on request.

Code availability
Computer code written and used in the analysis is available from the corresponding
author as per requested.

Fig. 4 Reprogrammable geometric information capacity of a 5 × 5 origami tessellation. a The tessellation composed of TMP and OT(+) cells (i.e., no
OT(−) cell) shows b the drastic change of the Shannon entropy S as a function of ρTMP= nTMP/25. The maximum entropy is achieved at ρTMP= 0.48
(see the example configurations in the dashed box). c All possible configurations for the 5 × 5 origami tessellation are characterized by the entropy S and
the results are plotted in the ternary diagram, which represents a three-component origami system. The color intensity of each hexagonal marker indicates
the value of the Shannon entropy S. Note that the empty region bounded by the dashed line in the ternary diagram indicates no configuration. The plot
shown in b, represents the change of S along the bottom axis in this plot, i.e., ρOT(−)= 0. By embedding different phases in the tessellation, the origami
system can transit to the medium entropy combinations (S≈ 2). See the example configurations in the dashed boxes. In addition to the three-component
system, defect unit cells can be embedded in the tessellation (see the left two inset illustrations for the defect phases).
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