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Data-driven prediction and analysis of chaotic
origami dynamics
Hiromi Yasuda1,2, Koshiro Yamaguchi1, Yasuhiro Miyazawa1, Richard Wiebe3, Jordan R. Raney2 & Jinkyu Yang1✉

Advances in machine learning have revolutionized capabilities in applications ranging from

natural language processing to marketing to health care. Recently, machine learning tech-

niques have also been employed to learn physics, but one of the formidable challenges is to

predict complex dynamics, particularly chaos. Here, we demonstrate the efficacy of quasi-

recurrent neural networks in predicting extremely chaotic behavior in multistable origami

structures. While machine learning is often viewed as a “black box”, we conduct hidden layer

analysis to understand how the neural network can process not only periodic, but also chaotic

data in an accurate manner. Our approach shows its effectiveness in characterizing and

predicting chaotic dynamics in a noisy environment of vibrations without relying on a

mathematical model of origami systems. Therefore, our method is fully data-driven and has

the potential to be used for complex scenarios, such as the nonlinear dynamics of thin-walled

structures and biological membrane systems.
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Chaos has been widely studied for decades in physics,
mathematics, and engineering1–4. Since chaos is generally
defined as aperiodic dynamical behavior of deterministic

systems that exhibit a high sensitivity to initial conditions1, it
could be considered predictable in a mathematical sense,
assuming all relevant information about the system is known. In
practical terms, however, it is extremely difficult to accomplish
this task hindered by unknown factors such as noise and inter-
actions with the surrounding environment. Therefore, it remains
a formidable challenge to predict chaotic behavior in practice.

In recent years, data-driven approaches have been employed to
analyze physical systems, such as finding the parameters/func-
tions of governing equations5–8. Recurrent neural networks
(RNNs) constitute a powerful machine learning approach for
processing and predicting time-series data9–11 (see Supplemen-
tary Fig. 1a for schematic illustration of a standard RNN). Due to
such capabilities, RNNs or their variations have been applied for
dynamics problems12,13. In particular, these neural networks with
recurrent connections have shown successful attempts to predict
the dynamics of chaotic systems14–19. However, RNNs are usually
considered to be a “black box” for learning and predicting time
series. Thus, interpretation of the neurons’ processing a time
series, especially for chaotic data, has remained elusive. This is
partly because the activation for each neuron in an RNN for the
current time step depends on the activation of every other neuron
at the previous time step (denoted by a red circle in Supple-
mentary Fig. 1b). This deep level of coupling interaction makes it
challenging to extract meaningful information about the effects of
individual neurons.

More recently, quasi-recurrent neural networks (QRNNs) have
been developed, particularly for natural language analysis (see
Supplementary Note 1 and Supplementary Fig. 1c)20. They
exhibit faster processing of time-series data and competitive
performance compared with other RNNs. Most notably, the
hidden states of a QRNN can be readily visualized and inter-
preted without additional processing (e.g., introducing self-
attention to visualize how the input data are processed21). The
QRNN is composed of convolutional layers which process time-
series data in parallel across each time step, and pooling layers in
which recurrent relations can be implemented (Supplementary
Fig. 1c). Due to the element-wise calculation in the pooling
function, activation of each neuron does not depend on the past
outputs of other neurons in the same pooling layer.

Here, we demonstrate not only prediction of both periodic and
chaotic data, but also analysis of hidden units’ distinctive
responses to such dynamic conditions by using the QRNN. To
examine the effectiveness of our approach, especially in the
experimental context, we need to produce unique sets of dynamic
data containing periodic, subharmonic, and chaotic trajectories in
a controllable manner. One of the examples showing such
behavior is a structure with intrinsic bistability22–25. In this study,
we design and fabricate a versatile bistable mechanical system
based on origami unit cells, specifically triangulated cylindrical
origami (TCO)26. These TCO cells, in serial connection, can
provide highly tunable properties27–29 as well as multi-degree-of-
freedom nature, thus providing an ideal playground to examine
the efficacy of our data-driven prediction. Based on the experi-
mentally measured time-series data, we explore the feasibility of
extracting meaningful system information, such as whether the
dynamic response of our origami system is chaotic or not, from
our data-driven approach. Since no mathematical model of the
system nor the knowledge of its dynamical nature (e.g., definition
of chaos) is required, our data-driven approach is model-free and
can be used to analyze complex dynamics in absence of prior
knowledge of the underlying physics of a system.

Results
Experimental demonstration of chaotic behavior of the trian-
gulated cylindrical origami. Origami has been extensively stu-
died recently due to its tailorable static responses. We show that a
unique TCO-based platform can produce rich data sets from its
complex dynamics, especially chaos, thus enabling to examine the
effectiveness of our data-driven approach. One of the interesting
features of the TCO is that its axial and rotational motions are
coupled with each other (see Fig. 1a where the folding sequence of
the TCO unit cell is depicted, and also Supplementary Movie 1
for folding animation). Figure 1b shows the flat sheet with crease
patterns of the TCO and its folded shape. To describe the initial
shape of the TCO unit cell, we define the initial height (h0), initial
rotational angle (θ0), and radius of the cross-section (R) as shown
in Fig. 1c, d.

To analyze the potential energy, we fabricate prototypes by
using construction paper sheets cut by a laser cutting machine
(see “Methods”; Supplementary Movie 2). Figure 1e, f shows
our fabricated prototype of the TCO unit cell with (h0, θ0, R)=
(50 mm, 70°, 36 mm) in the first and second stable states,
respectively. We first conduct quasi-static cyclic loading tests on
this paper prototype (see Supplementary Fig. 2) to examine and
enhance the repeatability of folding/unfolding behavior. After
this cyclic loading, we extract the force–displacement relationship
from compression tests and obtain the energy curve as shown in
Fig. 1g. Here, the energy is normalized by the initial height (h0)
and stiffness (K) at the initial unstretched state, i.e., no axial
displacement δ= 0 (see the inset illustration in Fig. 1g). We
observe the bistable behavior, such that the TCO unit cell
possesses two local minima in its energy landscape where the
normalized distance between these two stable states (Lb) is 0.35
(see the x-axis in Fig. 1g). This characteristic distance will be used
to aid in analyzing the dynamic behavior of the TCO.

Forced dynamic tests of a system of two connected TCO unit
cells are used to create the chaotic response data sets. The unit
cells have properties (h0, θ0, R)= (50 mm, ±70°, 36 mm), with
the left-most cross-section attached to a shaker that generates
harmonic excitation (see Fig. 2a; “Methods”). The experiment is
conducted for different excitation frequency ranging from 5 to 25
Hz. The folding motion of these two TCO unit cells is measured
by two action cameras together with a customized digital image
correlation program. In the experiments, we measure displace-
ment (ui) and rotational angle (φi) of each cross-section (i=
0, 1, 2, see Fig. 2b for the notation). We use these measured data
as well as the velocities, _ui and _φi, numerically calculated from
ui(t) and φi(t). These measured data are separated into two data
sets, the first of which is used for training, and the second for
testing (Fig. 2b).

A schematic diagram of the dynamic folding behavior is shown
in Fig. 2c overlaid on the underlying double-well potential energy
landscape. We can define three different regimes24: intrawell,
interwell (periodic), and interwell (chaotic) vibrations as shown in
Fig. 2c. The intrawell oscillation means that the system exhibits
small oscillations about one of the two local potential minima. If the
system overcomes the energy barrier and goes to the other stable
state, we observe the interwell vibrations, which is typically either
periodic or chaotic. Quasi-periodic responses may also occur in
nonlinear systems, though that was not observed in the origami
experiments. Figure 2d shows the measurement results for an
excitation frequency (fex) of 12 Hz. The displacement of the left-
most section (u0), which is attached to the shaker, shows input
sinusoidal waves. However, u1 indicates chaotic motion. Here we
define δi= ui−1− ui and plot a phase plane for δ1 in which blue
dots are all measurement data and red dots represent Poincaré
map30 as shown in Fig. 2e. Note that in the Poincaré map, periodic
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oscillations will show a single fixed point, or N-points for a N-
periodic response, whereas chaotic behavior will lead to a large
collection of points. The horizontal axis is normalized by Lb.
Therefore δi/Lb= 1 indicates that the TCO unit cell transits to the
second stable regime. It should be noted, however, that it is possible
for a forced dynamic response to transit over the unstable potential
hilltop, and reverse course without ever reaching the stable potential
minimum. Thus, this normalization provides only a nominal
indicator of a completed transit between the two stable equilibria.

The experiment result for fex= 12 Hz clearly shows that the
vibrations take place not only around the first stable state, but
also around the other energy local minimum state aperiodically,
which corresponds to the chaotic interwell vibration. This
manifests the capability of our TCO system to form chaotic
dynamics (further analysis on this chaotic behavior, specifically
Lyapunov exponent calculation, to be explained later). Although
demonstrations of chaotic behaviors of origami structures with
single degree of freedom have been reported25,31, our system is
notable in that we experimentally create the chaotic structural
vibrations by using multi-DOF origami structures (see Supple-
mentary Movie 3 for experimental measurements for different
excitation frequencies).

Prediction based on quasi-recurrent neural networks. Based on
the experimentally measured data, we study a data-driven
approach to predict multi-DOF folding motion of our origami
structure by employing the QRNN technique20 (see Supplemen-
tary Note 1 for the detailed information about the QRNN). This
prediction relies solely on the data obtained from the experiment,
and therefore, prior knowledge about a mathematical model of
the system is not required. To predict the chaotic/periodic folding
motion of the TCO structure, we use the QRNN consisting
of three hidden layers. Each layer is composed of 352 units.

The input data X contains n= 12 components (ui; _ui;φi; _φi for
three different cross-sections), and each component has T= 128
data points (i.e., time steps) which correspond to data length of
0.53 s given the action camera’s sampling frequency of 240 fps.

Based on the input data of X 2 R128 ´ 12 from t1 to t128, the
QRNN predicts all 12 variables for next 32 time steps. Then, by
using the predicted 32 time steps and the last 96 time steps from
the previous input data of 128 time steps, we predict another 32
time steps. We repeat this process to predict the dynamic
behavior of our origami structure. The total duration of the
measured data contains 8000 time steps (33.3 s), and we use first
5600 time steps (23.3 s) for training and the other 2400 time steps
(10.0 s) for evaluating the prediction. We obtain 21 sets of such
time-series data for 21 frequency steps (i.e., fex= 5, 6, 7,…, 25 Hz,
see Fig. 2b for the schematic illustration of our data sets
composed of training and testing data in various frequencies). We
run the training for 100 epochs (see “Methods” for the parameters
used for the QRNN training; also see Supplementary Fig. 3 for the
training results). Please note that we train one QRNN system by
using all frequency cases, which enables to predict both periodic
and chaotic cases, instead of training neural networks for a
specific frequency and predict the dynamics at the corresponding
frequency case.

Figure 3a–d shows the predictions made by the QRNN
(denoted by red color in the figure) compared with the actual data
from the measurements (denoted by gray color) for four different
excitation frequencies: fex= 7 Hz (periodic), 12 Hz (chaotic), 16
Hz (periodic), and 17 Hz (chaotic) (see the Supplementary
Movie 4 for the entire folding motions of the TCO unit cells
reconstructed from both experiments and predictions). In
Fig. 3a–d, the “displacements” insets show the displacement-
time history of u1 and u2, where time is normalized by excitation
period (Tex= 1/fex). The prediction of the QRNN shows excellent
agreement with the experimental data for the periodic cases
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Fig. 1 Folding behavior of the triangulated cylindrical origami (TCO) unit cells. a Folding sequence of the TCO. b–d The flat sheet with crease patterns of
the TCO (b) is folded into a 3D cylindrical shape (c). The red lines (e.g., AaB) and blue lines (e.g., AbB) indicate mountain and valley crease lines,
respectively. The parameters to define the initial shape are the initial height (h0), initial rotational angle (θ0), and radius of the cross-section (R) as shown
in the top-down view (d). Actual prototype of the TCO unit cells with (h0, θ0, R)= (50, 70°, 36) in its initial (e) and second (f) stable configuration.
g Energy landscape as a function of compressive displacement (δ), which is calculated from static experiments on the paper prototypes, shows the bistable
behavior, i.e., there exists two energy minima denoted by the triangle markers. The distance between these two energy minima is denoted by Lb. Here, the
energy (U) is normalized by the height (h0) and stiffness (K) at the initial unstretched state (i.e., δ= 0).
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(fex= 7 and 16 Hz). For the chaotic cases (fex= 12 and 17 Hz), the
QRNN exhibits quantitatively accurate prediction through ~30
excitation cycles compared with the later part of the prediction,
especially for 17 Hz case, and then the deviation begins growing.

It is worth noting that, even with a well-characterized chaotic
system (i.e., having access to the governing equations), the
sensitivity to initial conditions (and numerical rounding errors)

means that quantitative deviation is always expected. Hence,
qualitative matching is a more realistic goal. This can be seen by
the fact that the frequency spectrum obtained from time series of
u1 and u2 shows qualitatively similar trend as plotted in the “FFT”
insets in Fig. 3a–d. Specifically, the increase of lower frequency
components for chaotic responses is successfully captured. In
addition, even though the prediction from the QRNN deviated
from the experimental results as the number of excitation cycle
increases, the QRNN outputs surprisingly reasonable peak
deformations of both TCO unit cells. For example, the given
TCO configuration with θ0=+70° follows the counter-clockwise
rotation (φ > 0) under compression and vice versa (i.e., clockwise
rotation under tension), which is also predicted by the QRNN
(see Supplementary Fig. 4 for the configuration space of the first
and second TCO units as a function of u and φ).

The phase portraits, plotted as a function of displacement and
velocity, are shown in the “phase plane” insets in Fig. 3a–d. These
show the capability of the QRNN to produce complicated folding
behaviors of the TCO structures. For instance, lower frequency
excitation creates intrawell oscillation for both TCO unit cells,
whereas fex= 16 Hz triggers intermittent intrawell and interwell
oscillations in the same structure. This unique behavior is
accurately captured in the prediction. In addition to these
periodic responses, fex= 17 Hz case exhibits interwell chaotic
motion of the first unit cell, while the second unit cell shows
interwell periodic oscillations. This is also well expressed by the
QRNN (see Supplementary Movie 5 for measured and predicted
phase portraits for all excitation frequency cases).

To analyze qualitative behaviors for all excitation frequency
cases, we perform spectral analysis on different excitation
frequencies from 5 to 25 Hz and construct surface plots as
shown in Fig. 3e, f. In this figure, areas bounded by gray dashed
vertical lines indicate chaotic response, and show good agreement
between experiments and predictions (compare surface maps in
panels e and f). Given the presence of unknown factors in the
experiment, the QRNN shows remarkably accurate prediction
capability based purely on experimentally measured data
with noise.

Visualization of the response of the hidden layers to periodic/
chaotic data. This section focuses on the analysis of the hidden
state QRNN computing. Figure 4a shows the schematic illustra-
tion of the QRNN structure composed of three hidden layers.
Note that the element-wise multiplication in QRNN fo-pooling
enables the analysis on individual hidden units, because different
hidden units do not interact directly in a single pooling layer. This
allows independent calculation of each hidden unit until the next
QRNN hidden layer. For example, the responses of each hidden
state to the initial input data at fex= 7 Hz are visualized as a
function of time and hidden unit index in Fig. 4b. The hidden
state is composed of Ct vectors with 352 hidden units. Dark red/
blue colors indicate strong neuron activation, whereas the white
color implies reduced activation. These visualizations show sev-
eral patterns in the hidden states. Extracting the activation history
of specific hidden units from the final third hidden layer also
shows how a specific neuron processes input data. Figure 4c, d
shows the initial input data (u1 and u2) and the neuron activation
of 71st and 313th hidden units, respectively. Interestingly, these
hidden units show different neuron activation behaviors between
periodic (fex= 7 Hz in Fig. 4c, d) and chaotic (fex= 12 Hz in
Fig. 4c, d) cases. In addition, in the case of fex= 20 Hz (chaotic),
we observe notably different behavior between the 71st and 313th
hidden units in response to the same input data.

To analyze the neuron activation for different periodic/
chaotic regimes, we compare FFT analysis on the
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Fig. 2 Dynamic testing on the two-triangulated cylindrical origami (TCO)
structure. a Actual testing set up for the vibration test. The structure
consists of two TCO unit cells with the design parameters (h0, θ0, R)= (50
mm, ±70°, 36 mm) where h0, θ0, and R are the initial height, initial
rotational angle, and radius of the cross-section, respectively. The input
excitation is applied by a shaker, and the folding motion of these two TCO
unit cells is captured by two action cameras, together with a customized
digital image correlation program. b Conceptual illustration of operation on
the measurement data for training and testing the quasi-recurrent neural
network (QRNN). From the digital image correlation, we obtain
displacement (ui where i= 0, 1, 2) and rotational angle (φi where i= 0, 1, 2)
from the equilibrium position in the first stable state. The measured data
are separated into two data sets: training data and testing data. The
experiment was conducted for different excitation frequency (fex) ranging
from 5 to 25 Hz. Each data set contains n= 12 components (ui; _ui;φi; _φi for
three different cross-sections). c Classification of different folding motions
(chaotic, interwell, and intrawell periodic) of the bistable TCO unit cell
through the normalized potential energy U=Kh20 (green line), where U and K
are the potential and stiffness, respectively. The three different gray colored
curves with the arrow heads represent oscillatory motions in potential
wells. d, e Measurement results for the excitation frequency of 12 Hz.
The displacement of the left-most section (u0), which is attached to the
shaker, shows sinusoidal waves, while u1 indicates chaotic motion (d). Let
δi= ui−1− ui, we plot a phase portrait as a function of δ1 and its derivative
_δ1, in which blue dots are all measurement data, while red dots represent
Poincare map (e).
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experimentally measured data u1(t) (Fig. 4e) with the Lyapunov
exponent calculation based on the Rosenstein’s method32

(Fig. 4f, see also Supplementary Note 2 and Supplementary
Fig. 6 for details of the Lyapunov exponent calculation). From
the frequency spectrum and the Lyapunov exponent analysis,
we identify the three different chaotic regimes: 10–13, 17, and
19–22 Hz (bounded by the gray dashed lines in Fig. 4e–i). The
response of the third hidden layer is also visualized in Fig. 4g.
Based on our observation of the 71st and 313th hidden units
above, we extract the neuron activation of those two units and
calculate the average activation value over the time length of the
input data (i.e., 0.53 s). Figure 4h, i shows the average activation
of 71st and 313th hidden units, respectively. The 71st hidden
unit shows drastically different behaviors depending on the
regimes, i.e., positive (negative) values for periodic (chaotic)

cases. In addition, it is interesting that 313th hidden unit
exhibits weaker activation only for the first two chaotic regimes.
Note that although there are variations between different
frequencies in the same periodic/chaotic regimes (especially
fex= 14 Hz), we confirm this unique response of hidden units
from ten different training runs, and these multiple trained
systems could enhance the capability of distinguishing between
periodic and chaotic cases (see Supplementary Fig. 5 for
different patterns of hidden unit responses, and also “Methods”
for how we find such a hidden unit with unique response).

We observe that the QRNN allows not only the prediction of
origami folding behavior, but also the classification of chaotic/
periodic input data of the TCO systems by simply monitoring the
neuron activation of the hidden units in the final hidden layer.
We show that this neuron activation pattern can successfully
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Fig. 3 Quasi-recurrent neural network (QRNN) predictions for the folding motion of the triangulated cylindrical origami (TCO) system. Predictions
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frequencies; fex= a 7 Hz, b 12 Hz, c 16 Hz, and d 17 Hz. In the “displacement” plots, the displacement of each section (u1 and u2, respectively) is normalized
by the initial height (h0) and time is normalized by excitation period (Tex= 1/fex). Black solid lines are the initial input data for the QRNN, which are
obtained from the testing data. In the “FFT” plots, the fast Fourier transform (FFT) is applied to u1 and u2, where the frequency spectrum (F(Ω)) is
normalized by its maximum peak value (F(Ω)max). Blue dashed line indicates the excitation frequency (fex). “Phase plane” plots show different folding
behaviors of the TCO unit cell, intrawell, interwell, and chaotic motions, as a function of strain δi and its derivative _δi. Note that the distance between the
two energy minima Lb is used to normalize the data. Spectrum analysis of the FFT normalized by the maximum peak value of the spectra for different
excitation frequencies from 5 to 25 Hz is applied to the displacement of the first section (u1) and second section (u2). Areas bounded by gray dashed
vertical lines indicate chaotic regime, and there is a good agreement between e experiments and f predictions.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-020-00431-0 ARTICLE

COMMUNICATIONS PHYSICS |           (2020) 3:168 | https://doi.org/10.1038/s42005-020-00431-0 | www.nature.com/commsphys 5

www.nature.com/commsphys
www.nature.com/commsphys


mimic the Lyapunov exponent, which is a conventional method
to characterize chaotic behavior. Therefore, the hidden layer
analysis can be useful to understand how the QRNN responses to
the input data, and this simple approach has potential to
characterize and determine chaotic vibrations, providing a reason
behind the decision. Note that the concept of chaos is not
implemented specifically during training process. Thus, the
QRNN itself acquires prediction capability in the process of the
training based on the hidden units’ distinctive responses to input
data between periodic and chaos cases.

Discussion
In this study, we have demonstrated a data-driven approach to
predict and analyze chaotic/periodic behaviors by using QRNN.
Given challenges of chaos prediction, we have built a mechanical
platform composed of origami unit cells and have generated
different types of time-series data based on intrawell, interwell
periodic, and interwell chaotic vibrations. By utilizing experi-
mentally measured data, we have trained the QRNN composed of
three hidden layers and demonstrated the effectiveness of pre-
dicting chaotic/periodic time series. One of the unique features of

the QRNN-based approach is that it allows hidden layer analysis
readily without adding extra functions to neural networks. By
leveraging this feature, we have calculated average neuron acti-
vation of the hidden units in the final layer to examine their
response to the input data. This simple approach has revealed the
different responses of the QRNN’s hidden units to the system’s
dynamic condition, depending on whether it is chaotic or not.
Also, this approach has potential to provide the reason why the
QRNN produces chaotic data, and specifically what parts of the
input data lead to different responses of the QRNN by mon-
itoring the hidden units’ activation. Given the general nature of
the origami system and the QRNN method, this approach can be
applied to predict complex dynamics of various engineered and
biological systems (e.g., aircraft wing vibration, chaotic snap-
through of buckled plates33, flight trajectory prediction and safety
assessment34, and tissue organization35) by allowing to access
evolutionary steps and by providing more parameters to assess
their dynamical response. Based on these unique features of the
QRNN, our approach can contribute to better understanding of
both chaos and machine learning techniques for complex
dynamic systems.
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Fig. 4 Visualization of the hidden states of the quasi-recurrent neural network (QRNN). a Schematic illustration of our QRNN configuration composed of
three hidden layers is shown. Here, the input data of X are composed of the vectors xt 2 Rn from the initial time step (t= 0) to the maximum number of
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Lyapunov exponent calculation, which are compared with the hidden state responses for the third layer as shown in (g) whose color bar is shown in (b). To
quantify neuron activation for each excitation frequency, we extract and calculate the average neuron activation value Ct for h 71st and i 313th neurons.
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Methods
Prototype fabrication and compression test. We used construction paper sheets
(Strathmore 500 Series 3-PLY BRISTOL; 0.5 mm paper thickness) for the main
origami body and extruded acrylic plate (United States Plastic; 1.6 mm thick) for
the interfacial polygon (hexagon in current study), which are both cut by a laser
cutting machine (VLS 4.6, Universal Laser Systems). Here, folding lines or the
crease lines are based on the compliant mechanisms for accurate and consistent
folding behavior. These are then assembled into TCO unit cells with adhesive
sheets (Archival Double Tack Mounting Film, Grafix). See Supplementary
Movie 2 for fabrication process. Since TCO unit cells are assembled by hand,
each unit cell exhibits different force–displacement behavior. This uncertainty in
the quality of each prototype significantly influences the repeatability and con-
sistency of the folding/unfolding motion. To avoid this, each unit cell underwent
200 cycles with a controlled displacement from −3 mm (tension) to 15 mm
(compression) at 6 mm/s as a preconditioning process (detailed can be found in
ref. 29).

Dynamic test. We conducted the dynamic test on a chain composed of two TCO
unit cells with (h0, θ0, R)= (50 mm, ±70°, 36 mm). The left end of the two-TCO-
unit system was connected to the shaker (LDS V406 M4-CE, Brüel & Kjær). The
shaker was excited to apply single-frequency harmonic excitation to the system. To
track the folding/unfolding motion of the TCO unit cells during the dynamic
testing, we used two action cameras (GoPro Hero4) and customized Python codes
for noncontact digital image correlation. We captured images from these two
cameras at 240 fps, and identified the coordinates of the spherical markers attached
to the corner of the interfacial polygons (see Fig. 2a) based on the triangulation
method29.

Prediction based on quasi-recurrent neural networks. The QRNN used for the
prediction consists of three hidden layers, and the filter width (k) of 6 is used for each
convolution layer (see Fig. 4a). Training was carried out on minibatches of 50 data
sets by using the Adam optimization algorithm36 with learning rate of 0.001 and
decay rate of 0.8. To create each data set, we randomly chose excitation frequency out
of 21 different frequencies (fex= 5–25Hz), and from the selected frequency data with
5600 time steps, we randomly selected input data with 128 time steps and next 32
times step data to calculate error of prediction. We implemented this QRNN in
custom codes written in Python by using the machine learning library, TensorFlow,
and we performed the training/prediction.

Analysis on the hidden units. To compare the activation of the hidden units for
different frequencies, we calculated the average value over the duration of the input data
(0.53 s). Let cave,n(fex) be the average activation of nth hidden unit in the final hidden
layer for the excitation frequency of fex, we constructed a vector composed of Cave,n(fex)
for different frequencies as Cave;n ¼ ½cave;nð5HzÞ; cave;nð6HzÞ; � � � ; cave;nð25HzÞ�,
which is visualized as a bar graph as shown in Fig. 4h. To find unique response
of a hidden unit, we examined every hidden units by calculating the difference between
Cave,n and a desired response pattern. For example, if we look for a hidden unit showing
negative activation for chaotic data, we set a vector Ctarget ¼ c5; c6; � � � ; ci; � � � ; c25½ �
where:

ci ¼
0:5 ðperiodicÞ
�0:5 ðchaoticÞ

�
ði ¼ 5; 6; � � � ; 25Þ: ð1Þ

Then, we selected the hidden unit which has the minimum value of the norm
∥Cave,n− Ctarget∥. By changing Ctarget, we can explore the different types of hidden
unit activation patterns (see Supplementary Fig. 5).

Data availability
Data supporting the findings of this study are available from the corresponding author
on request.

Code availability
Codes composed throughout this study are available from the corresponding author on
request.
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