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A B S T R A C T

A crack terminating at an arbitrary angle to the interface between two neo-Hookean sheets
is investigated under plane stress conditions using finite deformation theory. The asymptotic
crack-tip deformation and stress fields are analyzed as a function of the ratio of the moduli
and the angle of the crack relative to the interface. Full-field numerical calculations and
experimental studies validate the analytical results. A stretch-based crack growth criterion
is developed using crack-tip field solutions. Such criterion can predict the delay of crack
growth through the bi-material interface observed in experiments and can be extended to any
heterogeneity and material.

. Introduction

The use of heterogeneity is a ubiquitous strategy in nature for producing materials with high toughness. However, challenges
rise in engineering applications, for example due to a lack of compatible materials, poor interfacial properties, and practical
anufacturing challenges. Two recent examples have used spatial variations in the cross-linker density in studies of failure in
eterogeneous polymers, including a soft elastomer (Wang et al., 2019) and a rigid photopolymer (Cox et al., 2019). For the soft
lastomer with a crack perpendicular to the interface, heterogeneity introduced by different cross-linking density was found to
ignificantly delay onset of crack growth leading to enhanced toughness (Wang et al., 2019). This effect was shown to be enhanced
hen the magnitude of the heterogeneity (i.e., the spatial variation in cross-linker ratio) between the two materials increased.
owever, a mechanistic explanation for the delayed onset of crack growth was not identified. In this paper, this observation is

nterpreted in terms of the deformation fields around an inclined crack terminating at an angle to the interface between two soft
lastomers.

Fracture of soft materials has been studied extensively dating back to the 1950s through experiments and analysis in the setting
f finite strain elastostatics. Following the pioneering work of Rivlin and Thomas (1953), the first crack-tip analysis was performed
y Wong and Shield (1969). Notably, Knowles and Sternberg considered a class of compressible hyperelastic solids, specifically
eo-Hookean solids, with cracks under Mode I conditions (Knowles and Sternberg, 1973, 1974, 1983). They found a smooth crack
pening (i.e., with a unique tangent at the crack tip) including for a crack lying on a bi-material interface in which, unlike the
ase of linear elastic materials, the singular stress field is not oscillatory. A series of papers followed that describe crack-tip fields of
eneralized neo-Hookean solids under mode I and mixed mode conditions in homogeneous and bi-materials (Geubelle and Knauss,
994a,b,c). Ru (1997) furthered these studies to include an arbitrary incline angle between two harmonic-type materials.

In this paper, the finite-deformation plane-stress problem of a crack terminating at an arbitrary angle to the interface between
wo neo-Hookean solids is investigated from both singular crack-tip and full-field finite element analysis and via experiments on 3D
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printed poly-dimethylsiloxane (PDMS) bi-materials. Such problem has been reasonably developed for linear elastic materials using
a small strain analysis, though it has not been fully solved for nonlinear materials under large deformation. The singular field for
a crack perpendicular to the interface under Mode I loading was found by Zak and Williams (1963) and for arbitrary bi-material
wedge configurations by Bogy (1971), while Cook and Erdogan (1972) and, more recently, Chang and Xu (2007) determined full-
field solutions including stress intensity factors for certain Mode I configurations. An arbitrarily oriented crack under anti-plane
shear loading that has a special connection to the analysis in this paper was investigated by Bassani and Erdogan (1979).

The crack-tip analysis in this paper builds on the work of Knowles and Sternberg (1973, 1974, 1983) and Geubelle and Knauss
1994a,b,c). Finite element analysis (FEA) as well as experiments are conducted to validate the solutions. A fracture criterion is
evelop to explain the observed increase in critical applied stretches for initiation of crack growth seen in the work of Wang et al.
2019) and to predict initiation in other bi-material systems.

This paper is organized as follows: Section 2 introduces the general equations that govern the deformation of neo-Hookean
yperelastic solids. Asymptotic solutions are derived in Section 3 for the crack-tip displacements and stresses. Those solutions are
hown to be in good agreement with the full-field finite element analysis of Section 4. Experimental evidence of the validity of the
nalytical solutions is presented in Section 5. The implications of our results as well as an explanation for the delayed initiation of
rack growth in heterogeneous systems are discussed in Section 6.

. Governing equations

Following standard notations, consider a thin sheet of material with material points denoted 𝐱 in the undeformed configuration
nd 𝐲(𝐱) in the deformed configuration. The deformation gradient tensor is 𝐅 = ∇𝐲, and the right Cauchy–Green deformation tensor

is 𝐂 = 𝐅𝑇𝐅. Consider an incompressible material, det𝐂 = 1, and the neo-Hookean strain energy density defined as:

𝑊 =
𝜇
2
(𝐼1 − 3) (1)

where the first invariant of 𝐂, 𝐼1 = tr𝐂 = 𝜆21 + 𝜆22 + 𝜆23, 𝜆𝑖 are the principal stretches, and 𝜇 is the neo-Hookean material parameter.
The first Piola–Kirchhoff stress 𝐏 for this material is:

𝐏 = 𝜇𝐅 − 𝑝𝐅−𝑇 (2)

where 𝑝 = −1∕3tr𝝈 is the pressure that is undetermined from the constitutive relation, and 𝝈 = 𝐏𝐅𝑇 is the Cauchy stress.
The crack problem is considered under plane-stress conditions (𝑃3𝑖 = 0, 𝑖 = 1, 2), leading essentially to a 2D problem with

symmetry about 𝑥3 = 0 (Knowles and Sternberg, 1973) of which the in-plane deformed coordinates 𝑦𝛼 , 𝛼 = 1, 2 are sought after.
he in-plane components of the first Piola–Kirchhoff stress are:

𝑃𝛼𝛽 = 𝜇(𝑦𝛼,𝛽 − 𝜆3𝜖𝛼𝑢𝜖𝛽𝑣𝑦𝑢,𝑣) (3)

here the out-of-plane stretch 𝜆 = 𝐹33 = (det𝐹𝛼𝛽 )−1, 𝛼, 𝛽 = 1, 2, is derived from the incompressibility condition, and 𝜖𝛼𝛽 is the
wo-dimensional alternating symbol (𝜖11 = 𝜖22 = 0, 𝜖12 = −𝜖21 = 1). The nominal traction on a surface with a normal 𝑛𝛽 is:

𝑡𝛼 = 𝑃𝛼𝛽𝑛𝛽 = 𝜇(𝑦𝛼,𝛽𝑛𝛽 − 𝜆−3𝜖𝛼𝑢𝜖𝛽𝑣𝑦𝑢,𝑣𝑛𝛽 ) (4)

The equilibrium condition under plane stress in the absence of body forces, 𝑃𝛼𝛽,𝛽 = 0, with (3) can be expressed as (Knowles and
ternberg, 1973; Geubelle and Knauss, 1994a; Liu and Moran, 2020a):

𝑦𝛼,𝛽𝛽 − 𝜆3𝜖𝛼𝑢𝜖𝛽𝑣𝑦𝑢,𝑣𝛽 − 3𝜆2𝜆,𝛽𝜖𝛼𝑢𝜖𝛽𝑣𝑦𝑢,𝑣 = 0 (5)

. Asymptotic boundary value problem and solutions

.1. Boundary value problem

Consider a traction-free crack terminated at an inclined angle 𝜙 at the interface between two semi-infinite neo-Hookean sheets
ith crack-tip polar coordinates defined in the undeformed configuration as shown in Fig. 1. Solutions are derived below for the
eformation 𝑦𝛼(𝑟, 𝜃) as 𝑟 → 0. The moduli of the two sheets are 𝜇(1) and 𝜇(2), with the ratio of moduli defined as:

𝑠 = 𝜇(2)∕𝜇(1) (6)

he region around the crack tip is divided into three wedged regions with separate solutions for 𝐲 in each. Let:

𝐲 =

⎧

⎪

⎨

⎪

⎩

𝐲(1), 𝜙 ≤ 𝜃 ≤ 𝜋
𝐲(2), 𝜙 − 𝜋 ≤ 𝜃 ≤ 𝜙
𝐲(3), −𝜋 ≤ 𝜃 ≤ 𝜙 − 𝜋

(7)

A normalized modulus function �̄�(𝜃) = 𝜇(𝜃)∕𝜇(2) is also defined in each region :

�̄�(𝜃) =

⎧

⎪

⎨

⎪

1∕𝑠, 𝜙 ≤ 𝜃 ≤ 𝜋
1, 𝜙 − 𝜋 ≤ 𝜃 ≤ 𝜙 (8)
2

⎩

1∕𝑠, −𝜋 ≤ 𝜃 ≤ 𝜙 − 𝜋
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Fig. 1. Schematic of a crack with one tip terminating at an inclined angle 𝜙 to the interface between two neo-Hookean sheets. 𝑟 and 𝜃 are polar coordinates
n the reference configuration. 𝜙 = 0 is the interface crack.

Consider the asymptotic form for the out-of-plane stretch 𝜆 = 𝑂(𝑟𝑞) with 𝑞 > 0, i.e. 𝜆 → 0 as 𝑟 → 0 (Knowles and Sternberg,
973). The governing Eq. (5) and traction (4), neglecting higher order terms in 𝑟, become:

𝑦𝛼,𝛽𝛽 = 0

𝑡𝛼 = 𝜇𝑦𝛼,𝛽𝑛𝛽
(9)

herefore, in each region

∇2𝑦(𝑖)𝛼 = 0, as 𝑟 → 0 (10)

he traction-free boundary condition on the crack surfaces and displacement and traction continuity on the interface, respectively,
re:

𝜕𝑦(1)𝛼
𝜕𝜃

|𝜃=𝜋 = 0,
𝜕𝑦(3)𝛼
𝜕𝜃

|𝜃=−𝜋 = 0 ∀𝑟 (11)

𝑦(3)𝛼 |𝜃=𝜙 = 𝑦(2)𝛼 |𝜃=𝜙, 𝑦(1)𝛼 |𝜃=𝜙−𝜋 = 𝑦(2)𝛼 |𝜃=𝜙−𝜋 , ∀𝑟 (12)

𝜕𝑦(3)𝛼
𝜕𝜃

|𝜃=𝜙 = 𝑠
𝜕𝑦(2)𝛼
𝜕𝜃

|𝜃=𝜙,
𝜕𝑦(1)𝛼
𝜕𝜃

|𝜃=𝜙−𝜋 = 𝑠
𝜕𝑦(2)𝛼
𝜕𝜃

|𝜃=𝜙−𝜋 , ∀𝑟 (13)

.2. Crack-tip solutions

The traction-free crack and continuity conditions lead to the separable solutions 𝐲(1) and 𝐲(2) in 𝑟 and 𝜃. The first two leading
erms in the series solution for the crack-tip deformation that are separable in the undeformed polar coordinates are (details in
ppendix A):

𝑦𝛼 = 𝑝𝛼𝑟
𝑚𝑔(𝜃) + 𝑞𝛼𝑟 ℎ(𝜃) (14)

here 𝑚 > 0, 𝑔(𝜃) and ℎ(𝜃) depend on geometry and material properties while 𝑝𝛼 and 𝑞𝛼 are amplitude factors that depend on the
verall geometry and far-field loading. The angular functions 𝑔(𝜃) and ℎ(𝜃) in each region are (details in Appendix A):

𝑔(𝜃) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−
𝑠 cos𝑚𝜙

sin𝑚(𝜙 − 𝜋)
cos𝑚(𝜃 − 𝜋), 𝜙 ≤ 𝜃 ≤ 𝜋

sin𝑚𝜃, 𝜙 − 𝜋 ≤ 𝜃 ≤ 𝜙

−
𝑠 cos𝑚(𝜙 − 𝜋)

sin𝑚𝜙
cos𝑚(𝜃 + 𝜋), −𝜋 ≤ 𝜃 ≤ 𝜙 − 𝜋

(15)

ℎ(𝜃) =

⎧

⎪

⎪

⎨

⎪

⎪

[ 𝑠
𝑠 cos2 𝜙 + sin2 𝜙

]

cos 𝜃, 𝜙 ≤ 𝜃 ≤ 𝜋
[

(𝑠 − 1) sin𝜙 cos𝜙
𝑠 cos2 𝜙 + sin2 𝜙

sin 𝜃 + cos 𝜃
]

, 𝜙 − 𝜋 ≤ 𝜃 ≤ 𝜙
[ 𝑠 ]

cos 𝜃, −𝜋 ≤ 𝜃 ≤ 𝜙 − 𝜋

(16)
3

⎩ 𝑠 cos2 𝜙 + sin2 𝜙
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Fig. 2. (a) Exponent 𝑚 entering (14) from solution to (17) as a function of incline angle 𝜙 and the heterogeneity factor 𝛼 as 𝛼 = (𝑠−1)∕(𝑠+1), where 𝑠 = 𝜇(2)∕𝜇(1);
(b) 𝑚 vs. 𝛼 for a crack perpendicular to the interface (𝜙 = 𝜋∕2).

where 𝑚 is the smallest positive root of the characteristic equation:

cos𝑚𝜋 + 𝛼 cos𝑚(2𝜙 − 𝜋) = 0 (17)

with the heterogeneity factor 𝛼 defined as:

𝛼 = (𝑠 − 1)∕(𝑠 + 1) (18)

𝛼 rescales the ratio of moduli to values between −1 and 1. Eq. (17) is the same characteristic equation derived for the anti-plane
shear problem for linear elastic isotropic material (Bassani and Erdogan, 1979), which is not surprising since the two problems
share the same governing equations and boundary conditions. There are roots of (17) between 0 and 1 (Bassani and Erdogan, 1979;
Ru, 1997) which are plotted in Fig. 2a. In general, 𝑚 increases monotonically with increasing heterogeneity 𝛼. The variation of
𝑚 with crack orientation is symmetric about 𝜙 = 𝜋∕2 and minimized at 𝜙 = 𝜋∕2 when 𝛼 < 0 but maximized at 𝜙 = 𝜋∕2 when
𝛼 > 0. This trend is similar to results for the plane problems for incompressible linear elastic materials as well (Dundurs’ parameter
𝛽 = 0) (Bogy, 1971).

For an open crack under large deformation, the following relation should hold (Liu and Moran, 2020a):

𝑦2|𝜃=𝜋 ≫ 𝑦2|𝜃=0 ⟹ 𝑝2𝑟
𝑚 ≫ 𝑞2𝑟 (19)

Therefore, since 𝑚 is generally less than 1, the term involving 𝑞2 can be neglected at large deformation leading to:

𝑦1 = 𝑝1𝑟
𝑚𝑔(𝜃) + 𝑞1𝑟 ℎ(𝜃)

𝑦2 = 𝑝2𝑟
𝑚𝑔(𝜃)

(20)

The angular functions 𝑔(𝜃) (15) and ℎ(𝜃) (16) are plotted in Fig. 3 for various values of 𝑠 and 𝜙. A few remarks about the
solutions follow: Both functions are continuous in 𝜃, which is required by the continuity condition (12). However, the derivatives
of the functions are discontinuous at 𝜃 = 𝜙 and 𝜃 = 𝜙− 𝜋 except in the homogeneous case (𝑠 = 1). The jump in the derivative has a
value of 𝑠, which is a result of the traction continuity on the interface (13). Lastly, both functions have zero derivative at the two
ends (𝜃 = ±𝜋), which is the result of the traction free condition on the crack surfaces (11).

Before proceeding, a few special cases are worth noting:

• 𝜙 = 0: For the interface crack, the solution to the characteristic Eq. (17) leads to 𝑚 = 1
2 and the solution is:

𝑦𝛼 = 𝑝𝛼𝑟
1∕2𝑔(𝜃) + 𝑞𝛼𝑟 cos 𝜃 (21)

where 𝑔(𝜃) is defined as:

𝑔(𝜃) =

{

𝑠 sin 𝜃∕2, 0 ≤ 𝜃 ≤ 𝜋
sin 𝜃∕2, −𝜋 ≤ 𝜃 ≤ 0

(22)

This is the same solution that was obtained by Knowles and Sternberg (1983) that, as in the linear elastic case, leads to a
well-defined energy release rate with respect to crack growth.

• 𝜙 = 𝜋∕2: This is the case of a crack that is perpendicular to the interface. This solution was not derived in any previous work
to the best of our knowledge. The solution is symmetric about the crack plane, 𝑥 = 0, leading to 𝑝 = 0 since 𝑦 must be an
4

2 1 1
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Fig. 3. Solutions of 𝑔(𝜃) and ℎ(𝜃) for various combinations of ratio of moduli 𝑠 and crack inclination angle 𝜙.

even function of 𝜃:
𝑦1 = 𝑞1𝑟 ℎ(𝜃)

𝑦2 = 𝑝2𝑟
𝑚𝑔(𝜃)

(23)

The solution derived (23) suggests a direct relation between the crack-tip opening and displacement in the 𝑥1 direction:

𝑦2 =
𝑝2𝑠1∕2−𝑚

𝑞𝑚1
𝑦𝑚1 (24)

This relation suggests one can extract the characteristic root 𝑚 by observing the shape of the deformed crack-tip. The value
of 𝑚 for this configuration is plotted in Fig. 2b as a function of the heterogeneity factor 𝛼.

3.3. Stress field around the crack tip

From the solutions in the previous section, the components of the deformation gradient are (see Appendix B):

𝐹11 = 𝑝1𝑟
𝑚−1[𝑚𝑔(𝜃) cos 𝜃 − 𝑔′(𝜃) sin 𝜃] + 𝑞1[ℎ(𝜃) cos 𝜃 − ℎ′(𝜃) sin 𝜃]

𝐹12 = 𝑝1𝑟
𝑚−1[𝑚𝑔(𝜃) sin 𝜃 + 𝑔′(𝜃) cos 𝜃] + 𝑞1[ℎ(𝜃) sin 𝜃 + ℎ′(𝜃) cos 𝜃]

𝐹21 = 𝑝2𝑟
𝑚−1[𝑚𝑔(𝜃) cos 𝜃 − 𝑔′(𝜃) sin 𝜃]

𝐹22 = 𝑝2𝑟
𝑚−1[𝑚𝑔(𝜃) sin 𝜃 + 𝑔′(𝜃) cos 𝜃]

(25)

The Cauchy stress components are 𝜎𝑖𝑗 = 𝐹𝑗𝑘𝑃𝑖𝑘 = 𝜇𝐹𝑗𝑘𝐹𝑖𝑘 (details in Appendix B):

𝜎11∕𝜇(2) = �̄�(𝜃)
[

𝑝21𝑟
2𝑚−2𝐺(𝜃) + 2𝑝1𝑞1𝑟𝑚−1𝐺𝐻(𝜃) + 𝑞21𝐻(𝜃)

]

𝜎12∕𝜇(2) = �̄�(𝜃)
[

𝑝1𝑝2𝑟
2𝑚−2𝐺(𝜃) + 𝑝2𝑞1𝑟

𝑚−1𝐺𝐻(𝜃)
]

𝜎22∕𝜇(2) = �̄�(𝜃)
[

𝑝2𝑟2𝑚−2𝐺(𝜃)
]

(26)
5

2
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Fig. 4. Solutions of 𝐺(𝜃), 𝐻(𝜃) and 𝐺𝐻(𝜃) for various ratio of moduli 𝑠 and crack inclination angle 𝜙.

Define 𝐺(𝜃) = 𝑚2𝑔2(𝜃) + 𝑔′2(𝜃), 𝐻(𝜃) = ℎ2(𝜃) + ℎ′2(𝜃) and 𝐺𝐻(𝜃) = 𝑚𝑔(𝜃)ℎ(𝜃) + 𝑔′(𝜃)ℎ′(𝜃). Utilizing results obtained in (14), these
angular functions are:

𝐺(𝜃) = 𝑚2

⎧

⎪

⎨

⎪

⎩

[ 𝑠 cos𝑚𝜙
sin𝑚(𝜙−𝜋) ]

2, 𝜙 ≤ 𝜃 ≤ 𝜋

1, 𝜙 − 𝜋 ≤ 𝜃 ≤ 𝜙
[ 𝑠 cos𝑚(𝜙−𝜋)sin𝑚𝜙 ]2, −𝜋 ≤ 𝜃 ≤ 𝜙 − 𝜋

(27)

𝐻(𝜃) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[ 𝑠
𝑠 cos2 𝜙+sin2 𝜙

]2, 𝜙 ≤ 𝜃 ≤ 𝜋

[ (𝑠−1) sin𝜙 cos𝜙
𝑠 cos2 𝜙+sin2 𝜙

]2 + 1, 𝜙 − 𝜋 ≤ 𝜃 ≤ 𝜙

[ 𝑠
𝑠 cos2 𝜙+sin2 𝜙

]2, −𝜋 ≤ 𝜃 ≤ 𝜙 − 𝜋

(28)

𝐺𝐻(𝜃) = 𝑚

⎧

⎪

⎪

⎨

⎪

⎪

⎩

− 𝑠2 cos𝑚𝜙
(𝑠 cos2 𝜙+sin2 𝜙) sin𝑚(𝜙−𝜋)

cos [(𝑚 + 1)𝜃 − 𝑚𝜋], 𝜙 ≤ 𝜃 ≤ 𝜋
(𝑠−1) sin𝜙 cos𝜙
𝑠 cos2 𝜙+sin2 𝜙

cos (𝑚 − 1)𝜃 + sin (𝑚 − 1)𝜃, 𝜙 − 𝜋 ≤ 𝜃 ≤ 𝜙

− 𝑠2 cos𝑚(𝜙−𝜋)
(𝑠 cos2 𝜙+sin2 𝜙) sin𝑚𝜙

cos [(𝑚 + 1)𝜃 + 𝑚𝜋], −𝜋 ≤ 𝜃 ≤ 𝜙 − 𝜋

(29)

One immediate observation from the leading term of (26) is that the Cauchy stress very close to the crack-tip has a 𝑟2(𝑚−1)

singularity (0 ≤ 𝑚 ≤ 1), depending on both the crack inclination and heterogeneity. This result will be discussed below in terms of
implications for toughening of the bi-material system. Circumferential variations of Cauchy stress components can be visualized in
Fig. 4 by plotting 𝐺(𝜃), 𝐻(𝜃) and 𝐺𝐻(𝜃) normalized by �̄�(𝜃), the ratios of moduli in the different regions. Both 𝐺(𝜃) and 𝐻(𝜃) are
constant within each region, while 𝐺𝐻(𝜃) varies within each region. Since 𝜎22 only depends on 𝐺(𝜃), this suggests 𝜎22 is constant
within each region of the problem. The other two components of Cauchy stress depend on the values of the parameters, with several
cases presented in the numerical results section below.

4. Full-field solutions: numerical validation

4.1. Finite element model

To verify the analytical solutions obtained in the above section and to obtain the parameters necessary for full-field solutions, a
2D strip with a single-edge crack (shown in Fig. 5a) is considered under plane stress. A specimen of height H0 comprises 10 inclined
strips of two neo-Hookean solids (1) as is the configuration in experiments in later sections, with parameters 𝜇(1) and 𝜇(2), oriented
at an angle of 𝜙 with respect to the horizontal 𝑥 axis. The horizontal width of each strip is w = H ∕2, and the crack of length
6
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Fig. 5. (a) Specimen setup for finite element analysis. (b) Mesh near crack tip for case of crack perpendicular to the interface; (c) Mesh near crack for case of
crack incline at 45◦ to the interface.

a = 0.3L0 extends from the left edge, where the specimen length L0 = 5H0. Displacements and tractions are continuous across each
bi-material interface. For ratio of moduli 𝑠 = 𝜇(2)∕𝜇(1) > 1, the stiffer material (material 2) is directly ahead of the crack-tip, and
conversely for 𝑠 < 1. A displacement 𝑢2 = 𝑦2 − 𝑥2 = (𝛬𝑎 − 1)𝐻0 is applied quasistatically on the top of the specimen, while 𝑢2 = 0 on
the bottom (𝑥2 = −𝐻0∕2). The shear traction vanishes on the top, the bottom, and the left and right sides of the specimen, and the
crack is traction free.

Finite element solutions for large deformations of incompressible, neo-Hookean materials are carried out using ABAQUS. The
specimen is meshed with CPS4 quadrilateral elements and radially-focused mesh along 𝑟 in a small region around the crack-tip
(0 < 𝑟 < 5 × 10−2H0), with a minimal mesh size of 2.5 × 10−6H0. Outside that circular area, the mesh transitions to a regular grid
in two materials near the crack-tip. All other regions are meshed with regular quadrilateral grid. Example meshes for two cases are
shown in Figs. 5b and c for reference. Calculations are carried out for various angles of the crack relative to the interfaces as well
as different combinations of ratio of moduli.

4.2. Parameter evaluation

To compare the numerical and asymptotic solutions, the three crack-tip parameters 𝑝1, 𝑞1, and 𝑝2 in (20) are extracted from
the finite element solutions for the deformed coordinates on a circle with radius 𝑟 = 𝑟0 = 5 × 10−4H0 close to the crack-tip. The
choice of points is not unique, nor is fitting to displacements rather than stresses, but the following has proven to lead to accurate
comparisons. Specifically, the parameters are computed from the deformed coordinates 𝑦1, 𝑦2 at 𝑟 = 𝑟0, 𝜃 = 0 and 𝑟 = 𝑟0, 𝜃 = 𝜋 from
(20) (Liu and Moran, 2020b):

𝑞1 =
𝑦1(𝑟0, 0)

𝑟0
, 𝑝1 =

𝑦1(𝑟0, 𝜋) − 𝑞1𝑟0ℎ(𝜋)
𝑟𝑚0 𝑔(𝜋)

, 𝑝2 =
𝑦2(𝑟0, 𝜋)
𝑟𝑚0 𝑔(𝜋)

(30)

This guarantees that the fitting from analytical model using evaluated parameters would pass through the coordinates at 𝑟 = 𝑟0, 𝜃 = 0
and 𝑟 = 𝑟0, 𝜃 = 𝜋 from numerical results.

4.3. Crack perpendicular to the interface, 𝜙 = 𝜋∕2

First, the symmetric problem of a crack oriented perpendicular to the interface (𝜙 = 𝜋∕2) is investigated for various ratios of
moduli 𝑠 and various applied stretch 𝛬𝑎. The dominance of singularity is first verified by examining the radial variation of the
dominant Cauchy stress component 𝜎22 directly ahead of the crack-tip (𝜃 = 0) plotted in Figs. 6a and b. For a specimen with
ratio of moduli 𝑠 = 2 and various applied stretches 𝛬𝑎, the finite element solutions for 𝜎22 agree with the predicted singularity
near the crack-tip as shown in Fig. 6a. For each simulation, the parameters 𝑞1 and 𝑝2 entering the asymptotic solution (23) are
evaluated according to (30) from deformed coordinates at each load step at the same radius 𝑟0 = 5 × 10−4H0. The finite element
results are plotted as points while the comparisons to the solutions (23) are solid lines. From Fig. 6a, it is observed that as applied
7
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Fig. 6. Cauchy stress 𝜎22 vs. distance 𝑟 ahead of crack tip (𝜃 = 0) for various levels of (a) applied stretch 𝛬𝑎 for 𝑠 = 2 and (b) ratios of moduli 𝑠 of 𝛬𝑎 = 1.5.
Deformed coordinates (c) 𝑦1 and (d) 𝑦2 as a function of 𝜃 at 𝑟0∕𝐻0 = 5 × 10−4 at different applied stretch for 𝑠 = 2 for 𝜙 = 𝜋∕2.

displacement increases, region of dominance of the asymptotic solutions grows in size, which is expected since large deformation
is a key assumption to the asymptotic solutions. The radial variation of the Cauchy stress 𝜎22 ahead of the crack-tip is plotted for
various ratios of moduli in Fig. 6b at the same applied stretch 𝛬𝑎 = 1.5. Again, the stresses follow the predicted singularity from
the analytical solutions. A few observations follow from Fig. 6b. First, for all ratios of moduli, the stress converges to a single far
field stress: 𝜎22 = 𝜇(2)(𝛬2

𝑎 − 1∕𝛬𝑎) which is the uniaxial response of neo-Hookean material. Moreover, the region of dominance of
the asymptotic solutions grows in size as the ratio of moduli decreases.

Deformed coordinates are plotted in Fig. 6 along the circular arc with radius 𝑟0 = 5 × 10−4H0, which is at a distance of about
30 elements away from the crack-tip. For the ratio of moduli 𝑠 = 𝜇(2)∕𝜇(1) = 2, Figs. 6c and d are plots of the angular variations of
deformed coordinates 𝑦1 and 𝑦2 at various applied stretch. Once again, excellent agreement between the finite element results and
asymptotic solutions is clearly seen. Note that the dominant crack-tip displacements are 𝑦2 − 𝑥2, which increase monotonically in
magnitude as the applied stretch increases, while the displacements 𝑦1 − 𝑥1 are much smaller in magnitude and weakly dependent
on the applied stretch.

Angular variations of the deformed coordinates 𝑦1 and 𝑦2 for various ratios of moduli 𝑠 = 𝜇(2)∕𝜇(1) are plotted in Figs. 7a and b,
respectively, along 𝑟0 = 5 × 10−4H0. The analytical solutions (23) are in excellent agreement with the finite element results for the
major displacements Fig. 7b, while there are differences for the minor displacements seen in Fig. 7a in the region 1 (𝜋∕2 < 𝜃 < 𝜋) for
large heterogeneity, e.g., 𝑠 = 5. The crack-tip opening profiles for various ratios of moduli are also plotted in Fig. 7c, showing that
the opening is symmetric under this loading condition for the crack perpendicular to the interface. Moreover, as the ratio of moduli
decreases, the crack opening is much larger at the same applied stretch. As the modulus decreases in material 1, larger crack-tip
openings are needed to match the same stress level maintained in material 2 (since shear modulus of material 2 is kept constant in
all loading cases).

Circumferential variations of the Cauchy stress components are plotted in Fig. 7d–f from the same parameters 𝑞1 and 𝑝2 used
for the deformation plots. From (26) and (27), 𝜎22 under this configuration is constant with respect to 𝜃 at constant 𝑟. As a result,
𝜎22 extracted from finite element results are normalized by the analytical prediction 𝜎22,𝑎𝑛𝑎 = 𝜇(2)𝑝22𝑚

2𝑟2𝑚−20 to visualize all cases in
a single plot in Fig. 7d. In this case, with 𝑝 = 0 by symmetry, 𝜎 depends only on 𝐻(𝜃), while 𝜎 depends on 𝐺𝐻(𝜃) which is
8
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Fig. 7. Comparison of crack-tip asymptotic solutions and finite element results for various ratios of moduli for 𝜙 = 𝜋∕2. Circumferential variation of (a) 𝑦1 and
(b) 𝑦2, (c) crack-tip openings at different ratios of moduli at applied stretch 𝛬𝑎 = 1.5 for 𝜙 = 𝜋∕2. (d–f) Circumferential variation of Cauchy stress components
𝜎22/𝜎22,ana, 𝜎11∕𝜇(2) and 𝜎12∕𝜇(2) respectively.

evident in the results shown in Fig. 7e and f. Overall, the analytical solutions in Cauchy stresses agree well with the finite element
results, but there are deviations particularly in region 1 (See Fig. 1) behind the crack tip. The deviation in both minor displacement
and Cauchy stresses in region 1 at larger heterogeneity (small s as 𝑠 < 1 and larger s as 𝑠 > 1) could be possibly explained in two
ways: (i) for larger heterogeneity, the region of dominance of asymptotic solutions becomes smaller, as observed in Fig. 6b, moving
it outside the region of dominance; (ii) The radial focused mesh includes elements with a larger aspect ratio that can affect the
numerical accuracy, especially under large deformation near the crack tip.

4.4. Results for 𝜙 = 𝜋∕4

The asymmetric problem with an inclined interface is investigated next for a crack terminating at an angle 𝜙 = 𝜋∕4 to the
interface. Finite element results for various ratios of moduli 𝑠 are presented, and again for each simulation, the parameters 𝑝1, 𝑞1
and 𝑝2 are evaluated according to (30), extracted from deformed coordinates from finite element results. The Cauchy stress 𝜎22
ahead of the crack tip is plotted in Fig. 8a for varying applied stretch 𝛬𝑎 and 𝑠 = 2 and in Fig. 8b for various ratios of moduli and
𝛬𝑎 = 1.5. Once again, good agreement is found between finite element results and analytical solutions for the crack-tip singular
field. Note, for the inclined crack, the Cauchy stress 𝜎22 directly ahead of the crack no longer converges to the same nominal stress
for various ratios of moduli at the same applied stretch due to the asymmetry in the problem. The deformed coordinates along a
circle of radius 𝑟0 = 5 × 10−4𝐻0 extracted from each simulation are plotted in Figs. 8c and d. Excellent agreement for 𝑦2 is found
except for small deviations for 𝑦1 observed in region 3 (see Fig. 1).

For the inclined crack, finite element results for 𝑠 > 1 and 𝑠 < 1 are plotted separately in Figs. 9 and 10, respectively, since the
magnitude of the deformations vary significantly. The deformed coordinates 𝑦1 and 𝑦2 for the case in which stiff material is placed
directly ahead of the crack tip (𝑠 > 1) are plotted as points in Figs. 9a and b for various ratios of moduli. The finite element results
again are in good agreements with the analytical solutions including the stress components as shown in Figs. 9d–f.

The finite element results for the case in which the soft material is directly ahead of the crack tip (𝑠 < 1) are shown in Fig. 10.
It can be immediately observed that the crack-tip opening is one order magnitude larger than that for the case of 𝑠 > 1 as shown
in Fig. 10a and b. As a result, the crack-tip opening is much larger compared to the initial crack as shown in Fig. 10c. This also
leads to orders of magnitude larger Cauchy stresses as shown in Fig. 10d–f. Nevertheless, the analytical solutions still are in good
agreement with the finite element results overall.

5. Experimental validation

5.1. Experimental methods

Long thin strips of PDMS specimens were 3D printed using direct ink writing (DIW). A custom-built multi-material DIW printer
was used to print specimens with the geometry described in Fig. 5, with H = 20 mm and a thickness of 0.6 mm. The mechanical
9
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Fig. 8. Cauchy stress 𝜎22 vs. distance 𝑟 ahead of crack tip (𝜃 = 0) for various levels of (a) applied stretch 𝛬𝑎 at 𝑠 = 2 and (b) ratios of moduli 𝑠 at 𝛬𝑎 = 1.5.
Deformed coordinates (a) 𝑦1 and (b) 𝑦2 as a function of 𝜃 at 𝑟0∕𝐻0 = 5 × 10−4 at different applied stretch for 𝑠 = 2 for 𝜙 = 𝜋∕4.

Table 1
Configurations for all specimens experimentally tested.

s 𝛼 𝜙

Specimen 1 1 0 𝜋∕2
Specimen 2 2.4 0.41 𝜋∕2
Specimen 3 16 0.88 𝜋∕2
Specimen 4 2.4 0.41 𝜋∕3
Specimen 5 2.4 0.41 𝜋∕4

behavior of PDMS is well described by a neo-Hookean hyperelastic model (Kim et al., 2011). The PDMS precursor ink used for
printing consists of 15% SE-1700 (Dow Corning) and 85% Sylgard 184 (Dow Corning) in mass with various amount of polymer
base to cross-linker ratio to obtain different moduli (Shan et al., 2015). PDMS with less cross-linker results in a material with a
lower stiffness. In this work, the material in region 2 is kept constant, i.e., region 2 is a stiff PDMS (using cross-linker ratio of 10:1)
while material in region 1 is a softer PDMS (cross-linker ratio of 20:1 and 30:1). Specimens were subsequently cured at 100 ◦C for
1 h after printing. The elastic moduli were obtained from uniaxial tensile tests of PDMS specimens with different cross-linker ratios,
as shown in Fig. 11a, with the ratio between elastic modulus with respect to 10:1 crosslinked PDMS also reported in Fig. 11b.

To investigate the effect of material heterogeneity, three specimens were fabricated with the crack oriented perpendicular to
the interface (𝜙 = 𝜋∕2) with various heterogeneity. Specimen 1 was a homogeneous specimen, with both regions printed with the
same 10:1 base:cross-linker ratio. The soft region in the other two specimens were printed with 20:1 and 30:1 base:cross-linker
ratios, leading to ratios of moduli of 𝑠 = 2.4 and 𝑠 = 16, respectively. Additionally, two specimens with the same ratios of moduli
𝑠 = 2.4 were fabricated with a crack inclined interface (𝜙 = 𝜋∕3, 𝜋∕4) to investigate asymmetry. All five specimen configurations
are summarized in Table 1. Specimen 1 was homogeneous, and the other four were bi-material specimens.

Specimens 2 and 3 with the crack perpendicular interface (𝜙 = 𝜋∕2) were pre-cut with a razor blade such that the cracks were a
few millimeters behind the interface. Prior to testing, the specimens were preloaded in tension until the crack grew to the desired
10
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Fig. 9. Comparison of crack-tip solutions and finite element results for various ratios of moduli (𝑠 > 1) for 𝜙 = 𝜋∕4. Circumferential variation of (a) 𝑦1 and (b)
𝑦2; (c) crack-tip openings at different ratios of moduli at applied stretch 𝛬𝑎 = 1.5. (d–e) Circumferential variation of Cauchy stress components 𝜎22, 𝜎11 and 𝜎12,
respectively.

Fig. 10. Comparison of crack-tip solution and finite element results for various ratios of moduli (𝑠 < 1) for 𝜙 = 𝜋∕4. Circumferential variation of (a) 𝑦1 and (b)
𝑦2; (c) crack-tip openings at different ratios of moduli at applied stretch 𝛬𝑎 = 1.5. (d–f) Circumferential variation of Cauchy stress components 𝜎22, 𝜎11 and 𝜎12,
respectively.
11
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Fig. 11. (a) Shear modulus of PDMS with different cross-linker ratios. (b) Resulting ratios of moduli with respect to 10:1 base to cross-linker ratio PDMS
corresponding to specimens in Table 1.

length to ensure the razor blade cut did not affect the crack-tip opening shape. For the heterogeneous specimens, the preload was
increased until the crack just reached the interface. For the homogeneous specimen (specimen 1), the preload was removed after
the crack grew an additional 5 mm. After preload, the specimen was unloaded to an unstressed configuration and then loaded again
up to failure. For specimens with inclined interfaces (specimen 4 and 5), cracks were pre-cut as close to the interface as possible
before loading until failure. During the loading process the deformation of the crack tip was recorded using a 4 K camera with a
resolution of 10.5 μm/pixel. In addition, speckle patterns were applied on the surface of the specimen using an airbrush for Digital
Image Correlation (DIC). DIC analysis for specimens was conducted using MATLAB Ncorr 2D package with subset size of 20 pixels
and subset spacing of 5 pixels.

5.2. Experimental results

First, for a crack perpendicular to the interface (𝜙 = 𝜋∕2), the shape of the crack tip should follow the power law relation (24),
where the power 𝑚 is a function of the material heterogeneity. Crack tips of the three specimens (specimen 1–3) with different ratios
of moduli across the interface (as indicated in Table 1) are shown in Figs. 12a–c. From here on, the heterogeneity factor 𝛼(18) is used
interchangeably with ratio of moduli 𝑠 to compare with analytical solutions. The crack tip of specimen 1 (homogeneous specimen)
is smooth and resembles a parabola. As the ratios of moduli increases, the crack tip sharpens. The crack-tip openings were analyzed
quantitatively by extracting the crack-tip coordinates (red scatters in figure) from the images. Then the extracted coordinates were
fit to the power law relation. The fitted crack-tip for each case is also displayed as a cyan line. The experimentally extracted crack-tip
opening exponent agrees very well with the analytical solution of the characteristic Eq. (17), as shown in Fig. 12d.

In addition to the crack-tip opening, the full-field displacements were also characterized using DIC. DIC results of homogeneous
specimen 1 and also specimen 3 with its large heterogeneity difference were analyzed. After obtaining full-field displacements, the
deformation gradient around the crack tip was computed by local spatial derivatives. The values of 𝐹21 and 𝐹22 straight ahead of
the crack tip (𝜃 = 0) are plotted in Figs. 13a and b. The component 𝐹21 straight ahead of the crack tip is close to zero as shown
in Fig. 13a, which agrees with the analytical solutions. The component 𝐹22 close to the crack tip exhibits singular behavior as
shown in Fig. 13b. From log–log plots of 𝐹22, the singularity for the homogeneous specimen is −0.45 while for the heterogeneous
specimen it is -0.21. Analytical solutions in (25) indicate that the singularity of 𝐹22 equates to 𝑚− 1 leading 𝑚 being 0.55 and 0.79
respectively. The values of 𝑚 extracted from the DIC results were also plotted in Fig. 12d, further validating the analytical solutions.
The circumferential variation of component 𝐹21 and 𝐹22 for both specimens at 𝑟 = 0.5 mm were plotted in Fig. 13c and d. The DIC
result agrees well with the analytical solutions, which are plotted as dashed lines. Additional accuracy in the result can be obtained
if higher resolution imagery can be employed to capture crack-tip deformation.

Secondly, three specimens with same ratios of moduli (𝑠 = 2.4) but different inclination angles were also experimentally tested:
images before and after crack growth are shown in Fig. 14. Cracks in both specimens with an inclined crack angle were deflected
along the interface in the softer region and never reached the interface. After deflection, the crack continued to grow along the
interface until it reached the grip section. In contrast, the crack always propagated through the interface when it was originally
perpendicular to the interface.
12



Journal of the Mechanics and Physics of Solids 158 (2022) 104653C. Mo et al.
Fig. 12. (a)–(c) Crack-tip opening for specimens with cracks perpendicular to the interface and ratios of moduli 𝑠 = 1, 𝑠 = 2.4 and 𝑠 = 16 respectively. Crack-tip
openings are traced using image analysis as red scatters in the plot. The best fit 𝑦2 ∼ 𝑦𝑚1 is shown in each plot with corresponding 𝑚. (d) extracted crack-tip
shape exponent 𝑚 vs. 𝛼 with 𝜙 = 𝜋∕2 with crack-tip opening (Error bars: variation of m with choice of crack-tip location and number of points for fitting) and
DIC.

6. Crack growth criterion

The experiments show that when the crack is perpendicular to the interface, if the material ahead of the crack is held fixed then
the critical applied stretch at the initiation of crack growth increases with the stiffness of the material behind the crack tip (Fig. 15a).
This toughening induced from the heterogeneity was also observed in the experiments of Wang et al. (2019). In addition, the crack
opening profiles depend on the heterogeneity as seen in Fig. 12. The observed critical applied stretches in this work are very similar
to those of Wang et al. (2019) despite the fact that the specimens in this work are 3D printed rather than cast, and have much larger
region widths and, therefore, fewer periods. From the analytical solutions (Section 3) and finite element analysis (Section 4), a crack
growth criterion is developed to predict the increasing delay in crack growth associated with an increased degree of heterogeneity
across the interface, thereby explaining the apparent toughening observed in experiments.

The criterion for initiation of crack growth is intended to resolve: (i) the direction of crack growth initiation and (ii) the load
required for initiation of crack growth. In considering fracture of soft materials, two criteria have been considered (Long and Hui,
2015). One that is well posed for homogeneous materials is a fracture criterion based on the energy release rate (Thomas, 1958).
For the crack tip terminated at the interface, the energy release rate is not well defined, for example path-independent integrals are
not defined for the bi-material samples. Hence, the energy release rate criterion is not well suited for this problem.

Another fracture criterion is based upon local quantities defined in the neighborhood of the crack tip. Failure in elastomers
and polymers is often described by breaking of polymer chains, which is directly related to the local stretch around the crack
tip (Thomas, 1958). Consequently, a stretch based criterion can be used to investigate crack growth in polymer. This approach
has been previously employed to predict the direction of crack growth for a center cracked specimen of rubber with mixed mode
loading (Hamdi et al., 2007), resulting in the direction of crack growth always being perpendicular to the loading direction regardless
of the crack inclination relative to loading direction. Consider a criterion for crack growth in the direction perpendicular to the
direction of the maximum principal stretch when it reaches a critical value of that stretch at a distance 𝑟 ahead of the crack-tip.
13

𝑐



Journal of the Mechanics and Physics of Solids 158 (2022) 104653C. Mo et al.
Fig. 13. Deformation gradient calculated from DIC for the homogeneous specimen (specimen 1) and the heterogeneous specimen (specimen 3) at 𝛬𝑎 = 1.25:
(a–b) 𝐹21 and 𝐹22 vs. 𝑟 ahead of the crack tip (𝜃 = 0); (c–d) 𝐹21 and 𝐹22 vs. 𝜃 for 𝑟 = 0.5 mm.

That distance is associated with a characteristic microstructure length scale that should fall within the region of dominance of the
asymptotic crack-tip field of Section 3. Specifically, the criterion can be written as:

𝜆1(𝑟𝑐 ) = 𝜆𝑐 (31)

where 𝜆1 is the maximum principal stretch and 𝜆𝑐 is the critical stretch associated with the material. A critical stretch criterion has
been widely adopted for ductile fracture of metals. Recently, this criterion was experimentally validated in elastomers by tracking
the principal stretch direction as crack propagates under mixed-mode fracture (Lu et al., 2021).

For the analytical solution, the principal stretches are computed by finding eigenvalues of the left Cauchy–Green tensors,
computed in full in Appendix B. When considering initiation of crack growth, only the leading term with a singularity of 𝑟2𝑚−2

is considered:

𝐁 = 𝑟2𝑚−2𝐺(𝜃)
[

𝑝21 𝑝1𝑝2
𝑝1𝑝2 𝑝22

]

(32)

where 𝐺(𝜃) is defined in (27). The maximum principal stretch and principal direction can be computed by finding the eigenvalues
and eigenvectors of the left Cauchy green tensors:

𝜆21 = (𝑝21 + 𝑝22)𝑟
2𝑚−2𝐺(𝜃) (33a)

𝐧1 = [𝑝1 𝑝2]𝑇 (33b)

One interesting observation from ((33)b) is that the principal direction does not have circumferential dependence. Hence, no matter
where the maximum principal stretch is achieved, the crack will always propagate in one direction given by 𝑝1 and 𝑝2 in ((33)b).
Moreover, near the crack tip, the following relation should hold true for large deformation: 𝑦 ≫ 𝑦 . Both solutions have terms with
14
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Fig. 14. Crack-tip openings for specimens with inclined interfaces, each with the same ratio of moduli (𝑠 = 2.4): before crack growth (a) 𝜙 = 𝜋∕4, (b) 𝜙 = 𝜋∕3,
(c) 𝜙 = 𝜋∕2; after crack growth (d) 𝜙 = 𝜋∕4, (e) 𝜙 = 𝜋∕3, (f) 𝜙 = 𝜋∕2 (Full video included in supplementary information).

Fig. 15. (a) Experimental observations of critical applied stretch for initiation of crack growth (Error bars: S.D., n = 3); (b) Numerical results of principal stretch
at 𝑟𝑐 = 1 μm ahead of the crack tip vs. far field applied stretch 𝛬𝑎 at various heterogeneity. The critical applied stretch 𝛬𝑐 can be predicted, here plotted as
squares in panel (a).

the same singularity, implying that 𝑝2 ≫ 𝑝1. Hence the principal direction is essentially the 𝑥2 direction, meaning the crack should
always propagate straight ahead (𝜃 = 0). The maximum principal stretch is:

𝜆1 = 𝑝2𝑚 cot 𝑚𝜋
2

𝑟𝑚−1 = 𝜆𝑐 (34)

Fracture propagates through the interface at applied stretch 𝛬𝑐 when the principal stretch reaches a critical level 𝜆𝑐 a distance 𝑟𝑐
ahead of the crack tip. The corresponding amplitude 𝑝2 can be obtained from the finite element analysis given (30).

In both the experiments and the finite element analysis, the material ahead of the crack tip is kept constant. The characteristic
length 𝑟𝑐 is related to the characteristic dimension of the microstructure of PDMS. In an ideal polymer network, after a polymer
chain is fractured, load concentrates onto the next chain. Hence, the characteristic length for the fracture criterion can be estimated
15



Journal of the Mechanics and Physics of Solids 158 (2022) 104653C. Mo et al.

l

from the end to end stretched chain length between the crosslinker. For PDMS with 10:1 crosslinking ratio which is the material
kept constant ahead of the crack tip, the backbone of the linear chain contains 𝑁 = 700 chemical units (Cai et al., 2015). With the
ength of each monomer 𝑏 = 1.3 nm (Cai et al., 2015), this leads to 𝑟𝑐 = 𝑁𝑏 ≈ 1 μm. This choice of 𝑟𝑐 is an upper bound, as the

chains are not fully stretched, while this falls within the region of dominance. Hence a smaller value, given the separable form of
the crack tip fields, would essentially lead to the same prediction with an appropriate 𝜆𝑐 in (31)–(34).

Using this characteristic length parameter, the principal stretches for various heterogeneity considered in the experiments vs.
applied stretch are estimated in Fig. 15b. Since the material ahead of the crack is held fixed, a constant 𝜆𝑐 is used to determine the
critical applied stretch for crack growth. From the measured applied critical stretch 𝛬𝑐 from experiments, the 𝜆𝑐 that minimizes the
square error between all three experiments and predictions is found to be 𝜆𝑐 = 13.4. This value of 𝜆𝑐 at 𝑟𝑐 provides good predictions
across all heterogeneities. In a uniaxial tensile test, the PDMS used in this work ruptured at approximately a stretch of 5, which is
on the same order of magnitude of the 𝜆𝑐 used in the criterion. The criterion is capable of providing quantitative prediction for the
initiation of crack growth through the bi-material interface. In particular, the critical applied stretch for any heterogeneity can be
computed using this fracture criterion from the finite element analysis, for example as given in Fig. 15a for 𝛼 = 0.2 and 𝛼 = 0.7. The
predicted results also agree well with the observation in previous work (Wang et al., 2019). Furthermore, from singularity analysis,
which is supported by finite element results (e.g., Fig. 6b), the stress stretch state ahead of the crack tip is much higher if the material
ahead of the crack (in Section 2) is softer (𝑠 < 1). This suggests that the crack would not be deterred by the interface. Indeed, this
criterion can be applied to other polymeric systems as well to predict the fracture behavior through bi-material interfaces from
estimates of the characteristic length scale 𝑟𝑐 , the critical stretch 𝜆𝑐 , and the ratios of moduli 𝑠.

Lastly, we note that the prediction that the crack will always propagate straight ahead of the crack are not in accord
with experiments with specimens with interfaces inclined relative to the crack. We recognize the difference between the ideal
configuration of the mathematical problem and the experiment. The ideal case is simplified as the interface is assumed to be perfectly
sharp and the crack tip to be exactly at the interface. However in reality, we do not expect the interface between two regions to
be sharp, both due to printing errors and to possible diffusion of cross-linker during the thermal curing process. Additionally, the
crack is pre-cut using a razor blade which leads to difficulty in achieving a crack that exactly terminates at the interface. He and
Hutchinson (He and Hutchinson, 1989) discussed the ramification of cracks approaching the interface at an inclined angle, where
they argued the crack would curve away from the interface if the material ahead of the interface is stiffer (𝛼 > 0) which is what was
observed in the experiments. The location of the initial crack tip could have a significant effect on the direction of crack growth.
Due to the nonlinearity of our material, we cannot confidently reach the same conclusion without further studies.

7. Conclusions

Crack-tip solutions for a crack terminated at an inclined angle at an interface between two neo-Hookean sheets have been
developed using asymptotic analysis with finite deformation elastostatics. The components of displacement, stretch, and Cauchy
stress have been derived from the solutions near the crack tip. The crack-tip fields exhibit varying singularity as the incline angle
and heterogeneity vary, as in the linear elastic case. As the stiffness of the material ahead of the crack increases (larger 𝛼 or 𝑠) the
power of singularity decreases.

The analytical solutions are validated by finite element analysis showing excellent agreement in both deformed coordinates and
Cauchy stress components for various heterogeneities and incline angles. Some discrepancies are observed, which could be attributed
to the extremely large distortions of the meshes.

Experiments also validate the analytical solutions by matching crack-tip exponents in the singular solution with extracted
crack-tip opening. Additionally, the local deformation gradient extracted using DIC also agrees with the analytical solutions.

Lastly, using a stretch-based crack growth criterion, the delay of the initiation of crack growth in heterogeneous soft composites
is predicted and compared to experimental observations. This work explains apparent toughening through the increase in critical
applied stretch for crack growth through a bi-material interface: Qualitatively, an increase in the elastic contrast decreases the stress
singularity, leading to lower stress ahead of the crack tip (Fig. 7b). Quantitatively, knowing critical values for a given material, one
could predict the critical applied stretch for a crack to propagate through the bi-material interface.
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Appendix A. Solution procedure

The asymptotic boundary value problem ∇𝑦(𝑖)𝛼 = 0 is separable and the first two terms of the general solution is:

𝑦(𝑖)𝛼 = 𝑟𝑚[𝑝(𝑖)𝛼 sin𝑚𝜃 + 𝑞(𝑖)𝛼 cos𝑚𝜃] (A.1)

y plugging in (A.1) into the boundary conditions described in (11)–(13), six equations are derived with seven unknowns being
(1)
𝛼 , 𝑝(2)𝛼 , 𝑝(3)𝛼 , 𝑞(1)𝛼 , 𝑞(2)𝛼 , 𝑞(3)𝛼 and 𝑚:

𝑝(1)𝛼 cos𝑚𝜋 − 𝑞(1)𝛼 sin𝑚𝜋 = 0 (A.2)

𝑝(3)𝛼 cos𝑚𝜋 + 𝑞(3)𝛼 sin𝑚𝜋 = 0 (A.3)

𝑝(1)𝛼 sin𝑚𝜙 + 𝑞(1)𝛼 cos𝑚𝜙 = 𝑝(2)𝛼 sin𝑚𝜙 + 𝑞(2)𝛼 cos𝑚𝜙 (A.4)

𝑝(3)𝛼 sin𝑚(𝜙 − 𝜋) + 𝑞(3)𝛼 cos𝑚(𝜙 − 𝜋) = 𝑝(2)𝛼 sin𝑚(𝜙 − 𝜋) + 𝑞(2)𝛼 cos𝑚(𝜙 − 𝜋) (A.5)

𝑝(1)𝛼 cos𝑚𝜙 − 𝑞(1)𝛼 sin𝑚𝜙 = 𝑠[𝑝(2)𝛼 cos𝑚𝜙 − 𝑞(2)𝛼 sin𝑚𝜙] (A.6)

𝑝(3)𝛼 cos𝑚(𝜙 − 𝜋) − 𝑞(3)𝛼 sin𝑚(𝜙 − 𝜋) = 𝑠[𝑝(2)𝛼 cos𝑚(𝜙 − 𝜋) − 𝑞(2)𝛼 sin𝑚(𝜙 − 𝜋)] (A.7)

fter substitution and simplification, the following characteristic equation is derived:

sin𝑚𝜋
[

cos𝑚𝜋 + 𝛼 cos𝑚(2𝜙 − 𝜋)
]

= 0 (A.8)

his Eq. (A.8) divides the solution into two cases:

• Case 1: sin𝑚𝜋 = 0
In this case, taking the lowest order solution yields 𝑚 = 1:

𝑦(𝑖)𝛼 = 𝑟[𝑝(𝑖)𝛼 sin 𝜃 + 𝑞(𝑖)𝛼 cos 𝜃] (A.9)

By plugging in (A.9) into (A.2) to (A.7), the solution can be obtained with one unknown parameter:

𝑝(1)𝛼 = 𝑝(3)𝛼 = 0,

𝑝(2)𝛼 =
(𝑠 − 1) sin𝜙 cos𝜙
𝑠 cos2 𝜙 + sin2 𝜙

𝑞(2)𝛼 ,

𝑞(1)𝛼 = 𝑞(3)𝛼 = 𝑠
𝑠 cos2 𝜙 + sin2 𝜙

𝑞(2)𝛼

(A.10)

Using these relations, one displacement solution that satisfies the governing equation and boundary condition is:

𝑦𝛼 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑞(2)𝛼 𝑟 𝑠
𝑠 cos2 𝜙+sin2 𝜙

cos 𝜃, 𝜙 ≤ 𝜃 ≤ 𝜋

𝑞(2)𝛼 𝑟
[

(𝑠−1) sin𝜙 cos𝜙
𝑠 cos2 𝜙+sin2 𝜙

sin 𝜃 + cos 𝜃
]

, 𝜙 − 𝜋 ≤ 𝜃 ≤ 𝜙

𝑞(2)𝛼 𝑟 𝑠
𝑠 cos2 𝜙+sin2 𝜙

cos 𝜃, −𝜋 ≤ 𝜃 ≤ 𝜙 − 𝜋

(A.11)

Finally 𝑞(2)𝛼 is renamed to 𝑞𝛼 since it is the amplitude for all regions:

𝑦𝛼 = 𝑞𝛼𝑟ℎ(𝜃) (A.12)

• Case 2: cos𝑚𝜋 + 𝛼 cos𝑚(2𝜙 − 𝜋) = 0
After plugging in this relation back to (A.2) to (A.7), it is found 𝑞(2)𝛼 = 0. Following that, the relations between other unknowns
are:

𝑝(1)𝛼 = −
𝑠 sin𝑚𝜋 cos𝑚𝜙
sin𝑚(𝜙 − 𝜋)

𝑝(2)𝛼

𝑝(3)𝛼 =
𝑠 sin𝑚𝜋 cos𝑚(𝜙 − 𝜋)

sin𝑚𝜙
𝑝(2)𝛼

𝑞(1)𝛼 = −
𝑠 cos𝑚𝜋 cos𝑚𝜙
sin𝑚(𝜙 − 𝜋)

𝑝(2)𝛼

𝑞(3)𝛼 = −
𝑠 cos𝑚𝜋 cos𝑚(𝜙 − 𝜋)

sin𝑚𝜙
𝑝(2)𝛼

(A.13)

Using these relations (A.13), another displacement solution that satisfies the governing equation and boundary condition is:

𝑦𝛼 =

⎧

⎪

⎨

⎪

⎩

𝑝(2)𝛼 𝑟𝑚 −𝑠 cos𝑚𝜙
sin𝑚(𝜙−𝜋) cos𝑚(𝜃 − 𝜋), 𝜙 ≤ 𝜃 ≤ 𝜋

𝑝(2)𝛼 𝑟𝑚 sin𝑚𝜃, 𝜙 − 𝜋 ≤ 𝜃 ≤ 𝜙
𝑝(2)𝛼 𝑟𝑚 −𝑠 cos𝑚(𝜙−𝜋)

sin𝑚𝜙 cos𝑚(𝜃 + 𝜋), −𝜋 ≤ 𝜃 ≤ 𝜙 − 𝜋

(A.14)

Again 𝑝(2)𝛼 is renamed to just 𝑝𝛼 which represents all regions:

𝑦 = 𝑝 𝑟𝑚𝑔(𝜃) (A.15)
17
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where m is the root of cos𝑚𝜋 + 𝛼 cos𝑚(2𝜙 − 𝜋) = 0.
Since the governing equation is linear, the two solutions found can be combined:

𝑦𝛼 = 𝑝𝛼𝑟
𝑚𝑔(𝜃) + 𝑞𝛼𝑟ℎ(𝜃) (A.16)

Appendix B. Derivation of deformation gradient and left Cauchy–Green tensor

The deformation gradient 𝐅 = ∇𝐲 is derived in the polar coordinates:

𝐹𝑖𝑗 =
𝜕𝑦𝑖
𝜕𝑥𝑗

=
𝜕𝑦𝑖
𝜕𝑟

𝜕𝑟
𝜕𝑥𝑗

+
𝜕𝑦𝑖
𝜕𝜃

𝜕𝜃
𝜕𝑥𝑗

(B.1)

where the Jacobian of transformation from cartesian (𝑥1, 𝑥2) to polar coordinates (𝑟, 𝜃) is:

𝐉(𝑟, 𝜃) =
⎡

⎢

⎢

⎣

𝜕𝑟
𝜕𝑥1

𝜕𝑟
𝜕𝑥2

𝜕𝜃
𝜕𝑥1

𝜕𝜃
𝜕𝑥2

⎤

⎥

⎥

⎦

=

[

cos 𝜃 sin 𝜃
− sin 𝜃

𝑟
cos 𝜃
𝑟

]

(B.2)

lugging the Jacobian (B.2) and solution (14) into (B.1) to obtain:

𝐹11 = 𝑝1𝑟
𝑚−1𝑚𝑔(𝜃) cos 𝜃 − 𝑝1𝑟

𝑚𝑔′(𝜃) sin 𝜃∕𝑟 + 𝑞1ℎ(𝜃) cos 𝜃 − 𝑞1𝑟ℎ
′(𝜃) sin 𝜃∕𝑟

= 𝑝1𝑟
𝑚−1[𝑚𝑔(𝜃) cos 𝜃 − 𝑔′(𝜃) sin 𝜃] + 𝑞1[ℎ(𝜃) cos 𝜃 − ℎ′(𝜃) sin 𝜃]

𝐹12 = 𝑝1𝑟
𝑚−1𝑚𝑔(𝜃) sin 𝜃 + 𝑝1𝑟

𝑚𝑔′(𝜃) cos 𝜃∕𝑟 + 𝑞1ℎ(𝜃) sin 𝜃 + 𝑞1𝑟ℎ
′(𝜃) cos 𝜃∕𝑟

= 𝑝1𝑟
𝑚−1[𝑚𝑔(𝜃) sin 𝜃 + 𝑔′(𝜃) cos 𝜃] + 𝑞1[ℎ(𝜃) sin 𝜃 + ℎ′(𝜃) cos 𝜃]

𝐹21 = 𝑝2𝑟
𝑚−1𝑚𝑔(𝜃) cos 𝜃 − 𝑝2𝑟

𝑚𝑔′(𝜃) sin 𝜃∕𝑟 = 𝑝2𝑟
𝑚−1[𝑚𝑔(𝜃) cos 𝜃 − 𝑔′(𝜃) sin 𝜃]

𝐹22 = 𝑝2𝑟
𝑚−1𝑚𝑔(𝜃) sin 𝜃 + 𝑝2𝑟

𝑚𝑔′(𝜃) cos 𝜃∕𝑟 = 𝑝2𝑟
𝑚−1[𝑚𝑔(𝜃) sin 𝜃 + 𝑔′(𝜃) cos 𝜃]

(B.3)

The Cauchy stress are computed from the left Cauchy–Green tensor 𝐁 = 𝐅𝐅𝑇 . Each component of 𝐁 as following:

𝐵11 = 𝐹 2
11 + 𝐹 2

12 = 𝑝21𝑟
2𝑚−2

[

[

𝑚𝑔(𝜃) cos 𝜃 − 𝑔′(𝜃) sin 𝜃
]2 +

[

𝑚𝑔(𝜃) sin 𝜃 + 𝑔′(𝜃) cos 𝜃
]2
]

+ 𝑞21
[

[

ℎ(𝜃) cos 𝜃 − ℎ′(𝜃) sin 𝜃
]2 +

[

ℎ(𝜃) sin 𝜃 + ℎ′(𝜃) cos 𝜃
]2
]

+ 2𝑝1𝑞1𝑟𝑚−1
[

𝑚𝑔(𝜃)ℎ(𝜃) cos2 𝜃 + 𝑔′(𝜃)ℎ′(𝜃) sin2 𝜃 − 𝑚𝑔(𝜃)ℎ′(𝜃) cos 𝜃 sin 𝜃 − 𝑔′(𝜃)ℎ(𝜃) cos 𝜃 sin 𝜃
]

+ 2𝑝1𝑞1𝑟𝑚−1
[

𝑚𝑔(𝜃)ℎ(𝜃) sin2 𝜃 + 𝑔′(𝜃)ℎ′(𝜃) cos2 𝜃 + 𝑚𝑔(𝜃)ℎ′(𝜃) cos 𝜃 sin 𝜃 + 𝑔′(𝜃)ℎ(𝜃) cos 𝜃 sin 𝜃
]

= 𝑝21𝑟
2𝑚−2[𝑚2𝑔2(𝜃) + 𝑔′2(𝜃)

]

+ 2𝑝1𝑞1𝑟𝑚−1
[

𝑚𝑔(𝜃)ℎ(𝜃) + 𝑔′(𝜃)ℎ′(𝜃)
]

+ 𝑞21
[

ℎ2(𝜃) + ℎ′2(𝜃)
]

(B.4)

𝐵12 = 𝐹11𝐹12 + 𝐹21𝐹22 = 𝑝1𝑝2𝑟
2𝑚−2

[

[

𝑚𝑔(𝜃) cos 𝜃 − 𝑔′(𝜃) sin 𝜃
]2 +

[

𝑚𝑔(𝜃) sin 𝜃 + 𝑔′(𝜃) cos 𝜃
]2
]

+ 𝑝2𝑞1𝑟
𝑚−1[𝑚𝑔(𝜃)ℎ(𝜃) cos2 𝜃 + 𝑔′(𝜃)ℎ′(𝜃) sin2 𝜃 − 𝑚𝑔(𝜃)ℎ′(𝜃) cos 𝜃 sin 𝜃 − 𝑔′(𝜃)ℎ(𝜃) cos 𝜃 sin 𝜃

]

+ 𝑝2𝑞1𝑟
𝑚−1[𝑚𝑔(𝜃)ℎ(𝜃) sin2 𝜃 + 𝑔′(𝜃)ℎ′(𝜃) cos2 𝜃 + 𝑚𝑔(𝜃)ℎ′(𝜃) cos 𝜃 sin 𝜃 + 𝑔′(𝜃)ℎ(𝜃) cos 𝜃 sin 𝜃

]

= 𝑝1𝑝2𝑟
2𝑚−2[𝑚2𝑔2(𝜃) + 𝑔′2(𝜃)

]

+ 𝑝2𝑞1𝑟
𝑚−1[𝑚𝑔(𝜃)ℎ(𝜃) + 𝑔′(𝜃)ℎ′(𝜃)

]

(B.5)

𝐵22 = 𝐹 2
21 + 𝐹 2

22 = 𝑝22𝑟
2𝑚−2

[

[

𝑚𝑔(𝜃) cos 𝜃 − 𝑔′(𝜃) sin 𝜃
]2 +

[

𝑚𝑔(𝜃) sin 𝜃 + 𝑔′(𝜃) cos 𝜃
]2
]

= 𝑝22𝑟
2𝑚−2[𝑚2𝑔2(𝜃) + 𝑔′2(𝜃)

]

(B.6)

Define 𝐺(𝜃) = 𝑚2𝑔2(𝜃) + 𝑔′2(𝜃), 𝐻(𝜃) = ℎ2(𝜃) + ℎ′2(𝜃) and 𝐺𝐻(𝜃) = 𝑚𝑔(𝜃)ℎ(𝜃) + 𝑔′(𝜃)ℎ′(𝜃). The matrix form of 𝐁 can be expressed
s:

𝐁 = 𝑟2𝑚−2𝐺(𝜃)
[

𝑝21 𝑝1𝑝2
𝑝1𝑝2 𝑝22

]

+ 𝑟𝑚−1𝐺𝐻(𝜃)
[

2𝑝1𝑞1 𝑝2𝑞1
𝑝2𝑞1 0

]

+𝐻(𝜃)
[

𝑞21 0
0 0

]

(B.7)

ppendix C. Supplementary data

Supplementary video related to this article can be found online at https://doi.org/10.1016/j.jmps.2021.104653.
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