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Cnoidal wave propagation in an elastic metamaterial
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Advances in fabrication techniques have led to a proliferation of studies on new mechanical metamaterials,
particularly on elastic and linear phenomena (for example, their phonon spectrum and acoustic band gaps). More
recently, there has been a growing interest in nonlinear wave phenomena in these systems, and particularly how
geometric parameters affect the propagation of high-amplitude nonlinear waves. In this paper, we analytically,
numerically, and experimentally demonstrate the propagation of cnoidal waves in an elastic architected material.
This class of traveling waves constitutes a general family of nonlinear waves, which reduce to phonons and
solitons under suitable limits. Although cnoidal waves were first discovered as solutions to the conservation
laws for shallow water, they have subsequently appeared in contexts as diverse as ion plasmas and nonlinear
optics, but have rarely been explored in elastic solids. We show that geometrically nonlinear deformations in
architected soft elastic solids can result in cnoidal waves. Insights from our analysis will be critical to controlling
the propagation of stress waves in advanced materials.
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I. INTRODUCTION

The ubiquity of three-dimensional (3D) printers and the
development of novel optimization techniques has allowed
researchers to develop mechanical metamaterials that possess
unprecedented specific stiffness [1–3], programmable Pois-
son’s ratio [4], damage tolerance [5], multistability [6], etc.
This has been achieved by precisely controlling the internal
geometric parameters of the metamaterial, leading to non-
linear mechanical behavior. Past work on the propagation
of waves in mechanical metamaterials has primarily focused
on the propagation of linear waves (or phonons) [7,8], with
band gaps often being of chief interest. Recently, additional
mechanical systems have been studied for their ability to prop-
agate nonlinear waves, including granular materials relying
on Hertzian contact [9,10], tensegrity structures [11], bars
and linkages [12], and systems composed of bistable elastic
elements [13,14]. Understanding nonlinear wave phenomena
in structured media is crucial for controlling stress waves
in protective materials, acoustics, vibration mitigation, and
aerospace applications [15].

Here we investigate nonlinear oscillatory cnoidal waves,
which have received little attention in elastic materials.
Cnoidal waves were first described in the late 1800s as pe-
riodic solutions of the nonlinear Korteweg–de Vries equation
for long waves in shallow water [16]. Since then they have
been extensively analyzed in the mathematics and physics
communities [17], finding applications in fields as diverse
as geophysical fluid dynamics [18], ion plasmas [19], non-
linear optics [20], and geomaterials [21]. Cnoidal waves are
related to solitary waves, or solitons, which have been studied
extensively in many contexts, including shallow water [22],
electrical transmission lines, and lattices of masses and non-
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linear springs [23]. In fact, solitons are merely cnoidal waves
with infinite period [16]. One instance of an observation of
a cnoidal wave in an elastic solid is in the experiments of
Nayanov [24] on lithium niobate. Nayanov excited large-
amplitude Rayleigh surface waves in a layered sample of
lithium niobate and silicon oxide and observed conversion of
these waves at high intensities into cnoidal waves and solitons.
He showed the characteristic sharp peaks and broad troughs
of cnoidal waves even though the input Rayleigh waves were
sinusoidal. Apart from this we are not aware of any other
observations of cnoidal waves in elastic solids, although they
have been mentioned in the theoretical literature on nonlinear
waves elsewhere [25,26]. In this paper we develop an ana-
lytical, numerical, and experimental framework to show that
an elastic metamaterial (Fig. 1) can support cnoidal waves as
a more general periodic nonlinear propagating wave, which
include the previously observed soliton solutions [27] as one
limit. Moreover, the nonlinearities in our mechanical metama-
terials can be tailored over a wide range since they are made of
3D-printed soft elastomers whose geometry can be controlled.

II. THEORY

Our medium for wave propagation is a 3D-printed network
of N columns (of six) of rotationally offset squares, composed
of polydimethylsiloxane (PDMS) and each with a copper
cylinder in the center as shown in Fig. 1(a). Each ( jth) column
of squares is capable of translation u j and rotation θ j . The
squares have a diagonal length of 2l ≈ 11.3 mm and are ro-
tated by θ0 = 25◦ from the y axis. The PDMS network exerts
both forces and torques on the four corners of the square with
a linear spring (with stretch stiffness k) and a torsional spring
(with twist stiffness kθ ), respectively. By assuming periodic
boundary conditions in the y direction, the force and torque
balance for each square of mass m and moment of inertia J in
terms of nondimensional displacement Uj = u j/2l cos θ0 and
rotation θ j are (the material constants are taken directly from
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Deng et al. [27] since we use a similar specimen)

∂2Uj

∂T 2
= Uj+1 − 2Uj + Uj−1 − 1

2l cos θ0
{cos(θ j+1 + θ0) − cos[θ j−1 + θ0 + K (θ j+1 − θ j−1) sin(θ j + θ0)]},

∂2θ j

∂T 2
= α2{−K (θ j+1 + 6θ j + θ j−1) − 2(Uj+1 − Uj−1) cos θ0 sin(θ j + θ0) + sin(θ j + θ0)[cos(θ j+1 + θ0) + 6 cos(θ j + θ0)

+ cos(θ j−1 + θ0) − 8 cos θ0] + cos(θ j + θ0)[sin(θ j+1 + θ0) − 2 sin(θ j + θ0) + sin(θ j−1 + θ0)]}, (1)

where Uj = Uj (t ), θ j = θ j (t ), T = t
√

k/m, α = l
√

m/J , and
K = kθ /kl2.

The discrete set of 2N-equations can be condensed
into two continuum equations by restricting rotation
to small angles such that sin θ j ≈ θ j and cos θ j = 1,
and introducing dimensionless length coordinate X and
dimensionless time T such that ∂U/∂X = 1

2 (Uj+1 − Uj−1),
∂2U/∂X 2 = Uj+1 − 2Uj + Uj−1, ∂θ/∂X = 1

2 (θ j+1 − θ j−1),
and ∂2θ/∂X 2 = θ j+1 − 2θ j + θ j−1. Performing the
calculations [27] yields the following equations for U (ζ )

FIG. 1. (a) Schematic of the system and geometry of the squares.
(b) Displacement and rotation of each square. (c) Experimental
setup including a shaker that provides the cnoidal wave input and
accelerometers at both ends that measure the input and output accel-
eration. (d) Image of the entire sample, with the portion recorded via
a high-speed camera indicated by the red rectangle.

and θ (ζ ):

d2θ

dζ 2
+ Pθ + Qθ2 = 0, (2a)

dU

dζ
= − (1 − K ) tan θ0

1 − c2
θ, (2b)

where ζ = X − cT is the traveling wave coordinate, and
c is the normalized wave speed. P and Q are constants that
depend on the stiffness parameters that can be calculated from
geometry and material parameters:

P = 4α2β

1 − c2
[(2c2 − 1 − K ) sin2 θ0 − 2(1 − c2)K],

Q = 2α2β

1 − c2
[(2c2 − 1 − K ) sin θ0], (3)

where β = 1/[α2(cos 2θ0 − K ) − c2]. Consider a solution Eq.
(2a) in the following form, called the cnoidal wave solution:

θ (ζ ) = A cn2

(
ζ

W
|κ2

)
+ B, 0 � κ2 � 1, (4)

where cn( ζ

W |κ2) is a Jacobi elliptic function [28]. When the
elliptic modulus κ2 → 1, we recover the soliton solution [27]:

lim
κ2→1

θ (ζ ) = Asech2

(
ζ

W

)
. (5)

Moreover, when κ2 → 0, θ (ζ ) behaves like a sinusoid:

lim
κ2→0

θ (ζ ) = −A

2
cos(

√
Pζ ). (6)

Thus, our proposed cnoidal wave solution [Eq. (4)] spans
the entire range from phonons (linear waves) to solitons. For
0 < κ2 < 1, by plugging the proposed solution Eq. (4) back
into Eq. (2a) and setting all coefficients of cnn( ζ

W |κ2) to zero,
we can obtain the following solution:

A = 3|P|
2Q

κ2

√
κ4 − κ2 + 1

,

B = − 1

2Q

[
P − |P| 2κ2 − 1√

κ4 − κ2 + 1

]
,

W = 2√|P| (κ4 − κ2 + 1)
1
4 . (7)

Note that our solution [Eq. (4)] is not sinusoidal but is periodic
with a period 4K(κ2), where K(κ2) is the complete elliptic
integral of the first kind [28]. However, Eq. (7) cannot fully
describe the solution, since P and Q are functions of the wave
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FIG. 2. Analytical cnoidal wave solutions for f = 25 Hz and
κ2 = 0.99, 0.95, and 0.90: (a) θ (ζ ) = Acn2( ζ

W |κ2) + B [Eq. (4)];
(b) ∂2U/∂T 2(ζ ) [Eq. (9)]; (c, d) amplitude of θ and ∂2U/∂T 2

solution vs f and κ2.

speed c. Another parameter other than the elliptic modulus κ2

is needed to completely describe our solution. An experimen-
tally convenient choice is frequency f = v

w
, where v is the

dimensional wave speed and w is the dimensional wavelength.
By applying the dimensional constants the frequency can be
expressed with two other unknowns (W and c) as

f = c

2KW
√

m/k
. (8)

The four unknowns of the problem A, B, W , and c can be
solved via four nonlinear equations [Eq. (7) and Eq. (8))].
After fully characterizing θ , the other coupled variable dis-
placement U (ζ ) can be solved by substituting Eq. (4) in Eq.
(2b). The acceleration ∂2U/∂T 2 can also be calculated:

U (ζ ) = (K − 1) tan θ0

1 − c2

∫ ζ

0

[
Acn2

( y

W
|κ

)
+ B

]
dy,

∂2U

∂T 2
= 2Ac2(1 − K )

W (1 − c2)
tan θ0 cn

(
ζ

W
|κ2

)
sn

(
ζ

W
|κ2

)

× dn

(
ζ

W
|κ2

)
. (9)

We compute the wave speed c within an experimentally
accessible range of parameters: 20 Hz < f < 40 Hz, and
0.7 < κ2 < 0.99. In this range, the wave speed c ≈ 0.82 (sim-
ilar to the speed found for solitons previously) is insensitive
to the variations in parameters. Figures 2(a) and 2(b) show
the cnoidal solution in rotation θ and acceleration ∂2U/∂T 2

for f = 25 Hz. Note that the curves are periodic but not
sinusoidal. We examine the dependence of the amplitude of
the cnoidal wave [Eq. (4)] on frequency f and elliptic modulus
κ2 by plotting it on a two-dimensional f -κ2 plane. Figure 2(c)
shows that for a fixed frequency, the rotation amplitude in-
creases with elliptic modulus, and for a fixed elliptic modulus
the amplitude increases with frequency. Similar trends are
observed in the acceleration amplitude, shown in Fig. 2(d).

We also explored the effect of geometry and the material
constants of the system on the solution shown here (details
are found in the Supplemental Material [29] Figs. S2 and
S3). Specifically, the wave speed of the cnoidal wave solution
increases monotonically with decreasing θ0 and increasing
K . The amplitude (A) and offset (B) have local minima and
maxima as a function of θ but change monotonically as a
function of K .

The governing equation [Eq. (2)] is a nonlinear differential
equation whose solutions may not be unique. While Eq. (4)
is one solution that satisfies the equations, another oscillatory
traveling wave solution to Eq. (2) is

θ (ζ ) = A

dn2
(

ζ

W |κ2
) + B, (10)

where dn( ζ

W |κ2) is another Jacobi elliptic function [28]. The
displacement and acceleration for this solution can also be
computed as

U (ζ ) = (K − 1) tan θ0

1 − c2

∫ ζ

0

[
A

dn2
( y

W |κ) + B

]
dy,

∂2U

∂T 2
= c2 (K − 1) tan θ0

1 − c2

2Aκ2

W

cn
(

ζ

W |κ2
)
sn

(
ζ

W |κ2
)

dn3
(

ζ

W |κ2
) .

(11)

Here, too, the values of A, B, and W depend on the elliptic
modulus κ2, and the parameters P and Q are

A = 3|P|
2Q

κ2 − 1√
κ4 − κ2 + 1

,

B = − 1

2Q

(
P + |P| 2 − κ2

√
κ4 − κ2 + 1

)
,

W = 2√|P|(κ4 − κ2 + 1)
1
4

. (12)

As κ2 → 1 we see that A → 0, suggesting that, unlike Eq. (4),
this solution does not reduce to a soliton in that limit. Also,
as κ2 → 0, the elliptic function dn(x|k) → 1, which is not
sinusoidal. Hence, this solution is distinct from the cnoidal
wave solution even though both are nonlinear oscillatory
traveling waves. For the rest of the paper we focus exclusively
on the solution provided by Eq. (4).

III. NUMERICS

Next, we validate our traveling wave solutions obtained in
Eq. (4). To do this, we numerically solve the ab initio force
and torque balance equations [Eq. (1)] for each individual
square. For a sample consisting of N squares, we have 2N
second-order coupled ordinary differential equations in dis-
placement Uj (T ), and rotation θ j (T ) for the jth square. The
first ( j = 1) square in the sample is externally excited using a
shaker, hence the boundary condition is

U1(T ) = U (ζ )|X=0, θ1(T ) = 0, (13)

where U (ζ ) is given by Eq. (9). We use a zero force and
torque boundary condition for the j = N square. We solve this
system of ODEs numerically in MATLAB for a long sample
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FIG. 3. Comparison between the numerical results (diamonds)
obtained by solving the 2N discrete differential equations [Eq. (1)]
and the analytical (solid lines) results [Eqs. (4) and (9)]: (a) θ and
(b) ∂2U/∂T 2 for f = 25 Hz and κ2 = 0.90.

(N = 1000) to test our analytical traveling wave solutions in
Eq. (4). We plot the theoretical [Eq. (4)] and numerical results
for rotation θ and acceleration ∂2U/∂T 2 in Fig. 3. Figure 3(a)
shows the results for θ j (t ) for j = 1 and j = 150 when the
specimen is excited using a displacement waveform in Eq. (9)
for κ2 = 0.90, and Fig. 3(b) shows the corresponding acceler-
ation plots. We indeed observe that the excitation given to the
j = 1 square [Eq. (13)] propagates in a self-similar manner
for both the rotation and acceleration. Agreement between
our analytical result and numerical simulations validates the
cnoidal wave solution provided. [See Fig. S7 in the Supple-
mental Material [29] for validation of Eq. (10).]

IV. EXPERIMENTS

Next, we conduct experiments to observe the propagation
of the cnoidal wave in a specimen consisting of N = 40
columns of squares. One end of the specimen is attached to
a shaker (APS 113) which provides periodic motion to the
j = 1 column. The motion of the shaker is controlled by
a function generator (FeelTech FY2300a) via an amplifier
(APS 125), which allows us to feed a cnoidal waveform
[i.e., Fig. 2(b)] to our system. We measure the acceleration
at the input ( j = 1) and the output ( j = 40) by attaching
piezoelectric accelerometers (PCB 352A24) at both ends [see
Fig. 1(c)]. Additionally, we record the experiment using a
high-speed camera (Photron Mini AX-200) operating at 6400
frames per second [see Fig. 1(d)] to measure the rotation
θ j . A speckle pattern is applied on the specimen in order to
provide sufficient contrast for digital image correlation (DIC)
analysis, performed using commercially available software
(GOM Correlate). [Note also that we applied DIC only in
the region marked by the red rectangle in Fig. 1(d), due to
the limits of field of view of our camera.] The rotation of
each square is obtained continuously by tracking two points
within each square. As shown in Fig. 1(b), the initial vector−→
AB forms an angle θr with the x axis in the reference frame.

At a later time t , the deformed vector
−−→
A′B′ forms a new angle

θr + θ j , with θ j denoting the rotation of the square j at time
t . For each combination of frequency f and κ2, the current
supplied to the shaker is calibrated before each test (details
are found in the Supplemental Material [29]). The specimen is
excited for 10 s to ensure stable propagation, during which the
accelerometers continuously record acceleration. The high-

(a) (b)

(c) (d)

(e)

(g) (h)

(f)

FIG. 4. The comparison between experimental (dash lines) and
numerical results (solid lines) of ∂2U/∂T 2 data for f = 25 Hz and
κ2 = (a) 0.99 and (b) 0.95. Experimental result of θ (dash lines)
compared to analytical solution (solid line) for f = 25 Hz and κ2 =
(c) 0.99 and (d) 0.95. Numerical result of θ for f = 25 Hz and
κ2 = (e) 0.99 and (f) 0.95. Numerical result of systems with various
sample length (N) for κ2 = 0.95: (g) ∂2U/∂T 2 and (h) θ j=20.

speed camera records for 3 s in the middle of this interval of
excitation (for tracking rotations θ j).

We excite the sample (at j = 1) with the cnoidal wave form
at f = 25 Hz for two values of elliptic modulus, κ2 = 0.99
and 0.95. With these values the shaker provides sufficient
amplitude [Eq. (7)] to allow Uj and θ j to be measured with
the high-speed camera. The acceleration at both the input
( j = 1) and output ( j = 40) squares are also collected [see
representative data in Figs. 4(a) and 4(b)]. The cnoidal wave
propagates through our system while preserving its amplitude
and its shape. The experimental wave speed can be calculated
from the peak offset time of the measured acceleration waves.
For κ2 = 0.99, the experimental wave speed is c = 0.821 (see
details in the Supplemental Material [29]), which is in excel-
lent agreement with the analytical prediction (c = 0.8184).
For κ2 = 0.95, the experimental wave speed is c = 0.8804,
while the analytical prediction is c = 0.8187. The difference
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between the analytical solution and measurement is slightly
larger in this case because the amplitudes of θ j and the
acceleration are much smaller, leading to larger experimental
uncertainty.

The rotations of the three representative squares within the
field of view during wave propagation for κ2 = 0.99 and 0.95
are presented in Figs. 4(c) and 4(d), respectively. Since the
analytical form of the cnoidal wave is found in the rotation,
measuring the angle of rotation provides the most direct evi-
dence that the wave propagating through our system is indeed
a cnoidal wave. For κ2 = 0.99 [Fig. 4(c)], the amplitude of
rotation is in close agreement with the expectations from the
cnoidal wave solution. The shape does not exactly match the
analytical solution, though it is periodic but not sinusoidal,
most clearly for θ j=8. A closer match in both shape and
amplitude is obtained for κ2 = 0.95 [Fig. 4(d)].

Though we observe good overall agreement between the
experiments and analytical predictions, two discrepancies are
immediately apparent: First, the output accelerometer shows
an additional peak during the experiments which is not ex-
pected from the analytical solution. Second, θ j=22 has a sig-
nificantly larger amplitude than θ j=8 and θ j=14. Both of these
can be explained with the help of the numerical simulations.

To understand the additional peak in the accelerometer
data, we numerically solve the ab initio force and torque
balance equations [Eq. (1)]. We use the same boundary
conditions, but now we solve the equations with only N =
40 instead of N = 1000, in order to account for finite size
effects [Figs. 4(a) and 4(b)]. The acceleration of the terminal
squares ( j = 40) matches well with the experimental results
in amplitude and shows the same anomalous peak observed in
experiments. Rotations are also obtained from the numerical
results and reported in Figs. 4(e) and 4(f). Here, too, we ob-
serve a second peak in each period of the numerical traveling
wave solution, which disappears as the length of the specimen
increases (the DIC measurements were unable to capture the
anomalous peak in θ , probably due to the resolution limit
of the rotation measurements, i.e., ∼0.003 rad). Next, we
obtain numerical results for additional specimens with various
lengths (N = 80 and N = 1000 squares), plotted in Figs. 4(g)
and 4(h). We find that as we increase the length of the
specimen, the magnitude of the secondary peak decreases in
both acceleration and rotation. Hence, we conclude that the
second peak in the experiment indeed arises from boundary
effects due to the finite specimen size.

Regarding the anomalous amplitude of θ j=22, this appears
to result from fabrication defects in the specimen. The spec-

imen was fabricated in two parts (squares j = 1–20 were
fabricated together, and squares j = 21–40 were fabricated
together), and subsequently joined via additional PDMS. We
observe that the second half of the specimen is slightly thicker
by ∼10% than the first half, effectively increasing the in-
plane stiffness and allowing larger-than-expected amplitudes
to occur in the second half, particularly near the boundary.
Interestingly, we observe that the cnoidal wave propagates
unhindered through this boundary, maintaining its shape, but
just altering in amplitude [see the Supplemental Material [29]
for a numerical solution to Eq. (1)]. These effects could be
easily harnessed using our 3D-printing methods to intention-
ally customize the wave propagation depending on the needs
of a given application.

V. CONCLUSION

In this paper, we have shown analytically, numerically, and
experimentally that nonlinear cnoidal waves can propagate
in a purely elastic metamaterial composed of a network of
rotationally offset squares. Our analytical solutions uncover
a whole class of oscillatory traveling waves in solids that span
from linear sinusoidal waves to vector solitons. To experi-
mentally characterize these we use a high-speed camera in
combination with accelerometers to monitor both the trans-
lational motion and the rotation of the squares. Our numer-
ical simulations show that the minor discrepancies between
the experiments and the analytical solution are artifacts of
the limited sample length. The discovery of this oscillatory
traveling wave is a crucial step toward understanding the
propagation of nonlinear waves in structured media. This is
important for applications in protective materials, acoustics,
vibration mitigation, and aerospace and could potentially lead
to more exotic dynamic properties, such as the transmis-
sion of information encoded in the frequency and shape of
such waves in elastic metamaterials. The 3D printability of
our metamaterial also allows unique control of the ampli-
tude and shape of cnoidal waves propagating through the
system.
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