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a  b  s  t  r  a  c  t

Using  chains  of  bistable  springs,  a  model  is derived  to  investigate  the  plastic  behavior  of  carbon  nanotube
arrays  with  damage.  We  study  the preconditioning  effect  due  to  the  loading  history  by  computing  ana-
lytically  the  stress–strain  pattern  corresponding  to  a fatigue-type  damage  of  the  structure.  We  identify
the  convergence  of  the  discrete  response  to the  limiting  case  of  infinitely  many  springs,  both  analytically
eywords:
arbon nanotube arrays
istable springs
ultiscale behavior
ullins effect

in  the  framework  of Gamma-convergence,  as  well  as  numerically.
© 2012 Elsevier Ltd. All rights reserved.
ermanent deformation

. Introduction

Because of their interesting combination of properties, includ-
ng high strength, low density, and high electrical and thermal
onductivities, carbon nanotubes (CNTs) have been of great inter-
st as nanoscale elements in a variety of applications (Baughman
t al., 2002). Aligned arrays of CNTs can be readily synthesized to
orm foam-like materials that combine low density with a desirable
issipative response (Cao et al., 2005; Gibson and Ashby, 1999).

There are a few interesting structural and mechanical features
f these materials: first, the thermal chemical vapor deposition
rocess that is typically used to synthesize the arrays (Cao et al.,
005) results in a gradient in physical properties (such as density)
long the height of the structure. This leads to strain localization
uring compression, with the majority of the structure remaining
ndeformed while increasing strain results in the sequential
ddition of highly localized buckles (Yaglioglu, 2007; Hutchens
t al., 2010). Second, there is a large amount of strain recovery
fter compression (typical of the CNT arrays that we  study, which

re synthesized using a vapor phase catalyst (Cao et al., 2005),
ut not for all types of CNT arrays that are synthesized differently
Yaglioglu, 2007; Bradford et al., 2011)). Third, the stress–strain
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E-mail addresses: blesgen@mis.mpg.de (T. Blesgen), f.fraternali@unisa.it (F. Fra-

ernali), raney@caltech.edu (J.R. Raney), adamendola@gmail.com (A. Amendola),
araio@caltech.edu (C. Daraio).
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response of the material is hysteretic, with different loading and
unloading paths. It has been noted in the past that repeated
compressive cycles result in a hysteresis of decreasing area and
decreasing stress at any given strain for the first few cycles (Cao
et al., 2005). This effect, sometimes referred to as preconditioning,
ceases after the initial few cycles, resulting in a hysteresis of
constant area for loading cycles thereafter. Finally, we observe that
this preconditioning effect is dependent on the maximum strain
reached. When the maximum strain of all previous loading cycles
is exceeded, the stress response obtained at these elevated strains
is that of the un-preconditioned material, as if it had never been
compressed previously (Misra et al., 2009).

The features we have enumerated for the foam-like response
of CNT arrays are analogous to those observed in other soft
materials such as filled rubbers. In the context of rubbers, this
response is associated with what is termed the Mullins effect
(Mullins, 1947; Dorfmann and Ogden, 2004). Capturing these fea-
tures simultaneously in models has proven difficult in the past
for other materials, with frequent use of simplifying assump-
tions that only allow models to match some of the experimental
observations (see, e.g., the idealized Mullins effect modeled by De
Tommasi and Puglisi, 2006).

We show in the present work that a suitable generalization
of the mesoscopic mass-spring model of CNT structures recently

proposed by Fraternali et al. (2010) is able to handle the mate-
rial damage due to preconditioning and permanent deformation
within an effective one-dimensional framework. We  introduce
preconditioning-induced material damage by setting to zero the

dx.doi.org/10.1016/j.mechrescom.2012.07.006
http://www.sciencedirect.com/science/journal/00936413
http://www.elsevier.com/locate/mechrescom
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tiffness of a suitable percentage of the bistable springs that
escribe the response of the material at the microscopic scale. This
llows us to model permanent axial deformation of the structure
hrough the irreversible ‘annihilation’ of the springs with zero stiff-
ess.

. Multiscale mass-spring models of CNT arrays

.1. Bistable spring model at the microscopic scale

We  model an infinitesimal portion of a CNT foam through the
istable spring model described in Fraternali et al. (2010),  which we
ereafter briefly summarize. We  assume that such a portion of the

oam can be described as a chain of N + 1 lumped masses m0, . . .,  mN,
ith m0 clamped at the bottom of the chain. The adjacent masses

re connected to each other through bistable springs characterized
y the axial strains

i = εi(uN) = ui−1
N − ui

N

hN
, i = 1, . . . , N (1)

here ui
N is the axial displacement of the mass mi (positive

pward), hN : = L/N is the equal spacing between the masses, and
N := {u0

N, . . . , uN
N}. The potential Vi and stress �i vs strain εi laws

f the generic spring are

i(εi) :=

⎧⎪⎨
⎪⎩

Vi
a(εi) := −ki

0[εi + ln(1 − εi)], εi < εi
a,

V i
b
(εi) := c1 + �i

aεi + 1
2

ki
b
(εi − εi

a)2, εi
a ≤ εi ≤ ε

i
c,

V i
c(εi) := c2 − ki

c[εi − εi
∗ + ln(1 − (εi − εi

∗))],  ε
i
c < εi,

(2)

i(εi) = Vi ′(εi) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ki
0

εi

1 − εi
, εi < εi

a,

�i
a + ki

b
(εi − εi

a), εi
a ≤ εi ≤ εi

c,

ki
c(εi − εi∗)

1 − (εi − εi∗)
, εi

c < εi

(3)

here ki
0 > 0, ki

b
< 0, ki

c > 0, εi
a > 0 and εi

c ≥ εi
a are constitutive

arameters (five independent parameters); the constants c1 < 0 and

2 > 0 are such that Vi
a(εi

a) = Vi
b
(εi

a), Vi
b
(εi

c) = Vi
c(εi

c); and it results
compare with Figs. 2 and 3 of Fraternali et al., 2010 for the notation)

i
∗ = εi

c − �i
a

ki
c + �i

a

, ε
i
c = εi

c(ki
c + �i

a)

ki
c + �i

c

+ (�i
c − �i

a)(ki
c + εi

cki
c + εi

c�i
a)

(ki
c + �i

a)(ki
c + �i

c)
(4)

with �i
a = ki

0(εi
a/(1 − εi

a)), �i
c = �i

a + ki
b
(εi

c − εi
a).

.2. Plasticity and damage

At the microscopic scale, the bistable springs introduced above
ermit a dynamic switching process between the phases (a) and
c), cf. Puglisi and Truskinovsky (2002, 2005).  As in Puglisi and
ruskinovsky (2005),  we name a response of the material plastic,
f the strain εi of a single spring exceeds the threshold εi

a. For a
hain of N springs, this can be characterized by the occurrence of
oading and unloading stress plateaux.

Within the current section, we rescale for simplicity L to unity;
ame (b) the unstable phase; and regard a mesoscopic element of

 CNT array as the limit N→ ∞ of a series of N microscopic springs.

Let m denote the number of hysteresis cycles that have been

pplied to the material during the previous loading history (up to
ifferent maximum strains). We  assume that such a loading path
as severely weakened the stiffness of (1 − ˇ(m))N microscopic
ommunications 45 (2012) 58– 63 59

springs, for given 0 < ˇ(m) ≤ 1, and that at the current time it holds
for all m ∈ N

(A1) ki
c = ki

0 for all i ∈ N

(A2) k1
0 = k2

0 = . . . = k	ˇN

0 = k0, k	ˇN+1


0 = . . . = kN
0 = ı

(A3) εi∗ = ε∗ for i = 1, . . . , ˇN

(A4) εi
a = εi

c for i = ˇN + 1, . . . , N.

Condition (A1) stipulates the symmetry of the microscopic springs.
(A2) states that the springs 	ˇN+ 1 
 to N have stiffness ki

0 = ı, where
ı > 0 is a small constant (damaged springs). We  name undamaged
those springs with stiffness constant k0 (springs 1 to ˇN).

With Vi given by (2), the mechanical energy of the structure is

EN(uN) := 1
N

N∑
i=1

Vi(εi(uN)).

Let � be the given total stress. The mesoscopic average strain is
simply ε(uN) := (1/N)

∑N
i=1εi(uN), where εi denotes the strain asso-

ciated with the ith spring. Following an original idea of Puglisi
and Truskinovsky (2005), we  model plasticity by the gradient flow
equations

� ε̇i(uN) = −∂�N

∂εi
(ε1(uN), . . . , εN(uN)) (5)

with the total energy

�N(ε1, . . . , εN) := 1
N

N∑
i=1

[Vi(εi) − �εi].

The evolution equation (5) lets εi evolve towards local minimiz-
ers of �N. We are interested in the limit � → 0 which amounts to
infinitely fast evolution such that ε(uN) attains a local minimizer of
�N. First we  construct the equilibrium points. Inside the ith spring
element, the strain must satisfy the condition (Vi)′(εi) = �. For given
total stress �, there are at most the three local minimizers (using
(A3))

ε̆i
a(m) = �

ki
0 + �

, ε̆i
b(m)  = � − �a

ki
b

+ εi
a, (6a)

ε̆i
c(m)  = �(1 + ε∗) + ki

0ε∗
ki

0 + �
= ε̆i

a(m)  + ε∗. (6b)

Note that for the derivation of (6), we require that ı is positive.
In a loading or unloading experiment, the first spring located

closer to the bottom of the structure is the softest and yields first,
changing its phase, Raney et al. (2011a). Next, the second spring
yields, and so forth, until the ˇNth spring. (Note that in accordance
with (A4), the springs ˇN + 1, . . .,  N with small spring constant ı
do not flip.) Therefore, similar to the case of N identical springs, the
total state of the series of springs is still completely specified by two
scalar parameters p and q and the additional parameter ˇ. Here, p,
q, 1 − p − q denote the phase fractions of the minimizers a, b, and c,
which corresponds to having ˇNp, ˇNq and ˇN(1 − p − q) springs in
phase a, b, and c, respectively. We  assumed here that ˇNp ∈ N.

As ε �→ Vi(ε) is concave in Regime b for all i ∈ N, if the elongation
of a spring in the local minimum ε̆i

b
is altered by an arbitrarily small
perturbation, it will move (according to the sign of the perturba-
tion) to either ε̆i

a or ε̆i
c . As a consequence, any system of N springs

with q /= 0 is unstable and we may  in the following restrict to the
case q = 0.
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The average strain of a system with ˇN springs in equilibrium
nd the first ˇNp springs in phase a fulfills the identity

ε(m) = 1
N

ˇN∑
i=1

ε̆i
a(m)  + 1

N

ˇN∑
i=ˇNp+1

ε∗ + 1
N

N∑
i=ˇN+1

�

ı + �
.

ere we only study the limiting case ı ↘ 0 where there is no further
mall correction of the damaged springs. In this case, we  obtain

(m) = ˇ�(m)
k0 + �(m)

+ (1 − ˇ) + ˇ(1 − p)ε∗

= �(m) + (1 − ˇ)k0

k0 + �(m)
+ ˇ(1 − p)ε∗, (7)

here we used (A1)–(A4), (3) and (6); especially ε̆i
c = ε̆i

a + ε∗.
Resolving (7),  we get the stress–strain relationship for a N-

prings system

(ε, m) = k0(ε − εp +  ̌ − 1)
1 − (ε − εp)

(8)

ith εp(m) : = ˇ(1 − p)ε*. The latter can in a natural way be identified
ith the plastic strain. From (8) we see that � only depends on m

nd on the elastic strain εel : = ε − εp.

.3. Analytic computation of the continuum limit

We  identify the continuum limit of EN in the framework of
-convergence (see, e.g., Braides, 2002). This is not a standard pro-
edure as V also depends on the spatial position.

Let L = 1 (which can always be obtained by rescaling), and
 : = (0, 1). For prescribed l > 0, we impose the boundary conditions

N
0 = 0, uN

N = l. (9)

e now specify our assumptions on V. The mechanical pair-
otential is a function of the deformation gradient. In addition, in
rder to capture the effect of damage expressed in the assumptions
A1)–(A4) above, we need to respect the dependence of V on the
patial position i. Let dom(V) = [0, 1] × D for suitable D ⊂ R  be the
omain of definition of V. We  postulate the following conditions on
.

(COND 1) There exist positive constants c1, C1, such that

1(|ε| − 1) ≤ V(x, ε) ≤ C1(|ε| + 1) for all (x, ε) ∈ [0,  1] × D.

(COND 2) The function x �→ V(x, ε) is continuous for any ε ∈ D.
After extending V given by (2) continuously in i by interpola-

ion, we easily verify that this extension (again called V) satisfies
oth COND 1 and COND 2. For given deformations uN := (uN

i
)0≤i≤N ,

e may  rewrite the overall mechanical energy of the chain as a
unctional of the discrete displacement gradient,

N(uN) := hN

N−1∑
i=0

V(
i

N
,

uN
i+1 − uN

i

hN
). (10)

he functional V coincides with (2),  but the dependence on the sub-
cript i has moved to the first argument. We  scaled EN by hN as we
re dealing with a microscopic energy.

Following ideas in Braides et al. (1999),  we introduce for N ∈ N

he set AN of all functions u : hNZ ∩ [0,  1] → R, setting ui : = u(ihN).
e tacitly identify A(0, 1) with the piecewise affine linear interpo-
ations, i.e.

(0, 1) := {u : [0,  1] → R  | u is affine in (ihN, (i + 1)hN),

0 ≤ i ≤ N − 1}.
ommunications 45 (2012) 58– 63

With ui = u(ihN), as a shorthand notation for the second argument
in (10), we introduce the symbol

∇NuN(x) :=
uN

i+1 − uN
i

hN
, x ∈ [ihN, (i + 1)hN), 0 ≤ i ≤ N − 1,

which is a discrete approximation of ∇u with step size hN.
For later use we  introduce El

N : A(0, 1) → R  ∪ {+∞} by

El
N(u) :=

{
EN(u), if u(0) = 0, u(1) = l,

+∞, otherwise.

Theorem 1 (Continuum limit of EN). Let V satisfy the conditions
(COND 1), (COND 2) and let l > 0. Then the functional El

N converges
in the �-sense for N→ ∞ to a functional El : L1(0,  1) → R  defined by

El(u) :=

⎧⎨
⎩

∫ 1

0

V∗∗
0 (x, ∇u(x)) dx if u ∈ H1,1(0,  1),  u(0)= 0, u(1)= l,

+∞ else.

Here, V0(x, z) := 1
2 min  {V(x, z1) + V(x, z2) | z1 + z2 = 2z}, and V∗∗

0
denotes the convexification of V0 (see, e.g., Rockafellar, 1997).

Proof.

(a) Proof of the lim inf-inequality.

Let a sequence (uN)N∈N ⊂ L1(0,  1) be given with uN → u in L1(0,
1) as N→ ∞.  W.l.o.g. El

N(uN) < ∞ and thus EN(uN)< ∞.  Now, as the
bounds in (COND 1) are uniform in x, we can apply Theorem 2 in
Blesgen (2007) which proofs the lim inf-inequality for (uN)N.

(b) Proof of the lim sup-inequality.

Let u ∈ L1(0, 1) be given. We  have to show the existence of a
sequence (uN)N∈N ⊂ L1(0,  1) such that uN → u in L1(0, 1) as N→ ∞
and

lim sup
N→∞

El
N(uN) ≤ El(u).

By a standard density argument, cf. Part (b3) in the proof of Theorem
2 in Blesgen (2007),  we  may  restrict to the affine case u(x) = ax + b.

For the construction we first ignore the boundary conditions (9).
Let N = km for some m, k ∈ N. We  will choose functions uN which
are periodic in any subinterval of (0, 1) with length mhN. We  write
the integrand as V(dN(x), ·), where dN : (0,  1) → R  is a piecewise
constant bounded function with dN → Id for N→ ∞.  The method
can be generalized to more general situations. With these settings
we find

EN(uN) =
k−1∑
i=0

∫ (i+1)mhN

imhN

V(di, ∇NuN(x)) dx + o(1), (11)

where di : = dN((i + 1/2)mhN); and (COND 2) has been used.
By convexity of V∗∗

0 and Carathéodory’s theorem (see, e.g.,
Rockafellar, 1997) we know that for any 0 ≤ i ≤ k − 1, there exist real
numbers 	1, 	2 with 0 ≤ 	1, 	2 ≤ 1 and 0 ≤ 	1 + 	2 ≤ 1 such that

V∗∗
0 (di, a) = 	1V0(d1,i, a1) + 	2V0(d2,i, a2)

+ (1 − 	1 − 	2)V0(d3,i, a3), (12)
(di, a) = (di, ∇u) = 	1(di,1, a1) + 	2(di,2, a2)

+ (1 − 	1 − 	2)(di,3, a3). (13)
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For given 	1, 	2 we introduce the sets

�N
1 := � ∩ ∪k−1

i=0 (ihm, ihm + h		1m
],

�N
2 := � ∩ ∪k−1

i=0 ((ihm + h		1m
), (ihm + h	(	1 + 	2)m
],

�N
3 := � ∩ ∪k−1

i=0 ((ihm + h	(	1 + 	2)m
), (i + 1)hm],

uch that � = �N
1 ∪ �N

2 ∪ �N
3 .

By definition of V0 it holds for 0 ≤ i ≤ k − 1 and any s = 1, 2, 3,

0(ds,i, as) = 1
2

[V(ds,i
1 , as

1) + V(ds,i
2 , as

2)],

here ds,i, as, 1 ≤ s ≤ 3, are suitable numbers such that ds,i = (ds,i
1 +

s,i
2 )/2 and as = (as

1 + as
2)/2. We  choose uN(x) = aN(x)x + b, where

N (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1
1, if x ∈ �N

1 ∩ ∪k−1
i=0

∪m/2−1
j=0

((im + 2j)hN , im + 2j + 1)hN ],

a2
1, if x ∈ �N

2 ∩ ∪k−1
i=0

∪m/2−1
j=0

((im + 2j)hN , (im + 2j + 1)hN ],

a3
1, if x ∈ �N

3 ∩ ∪k−1
i=0

∪m/2−1
j=0

((im + 2j)hN , (im + 2j + 1)hN ],

a1
2, if x ∈ �N

1 ∩ ∪k−1
i=0

∪m/2−1
j=0

((im + 2j + 1)hN , (im + 2j + 2)hN ],

a2
2, if x ∈ �N

2 ∩ ∪k−1
i=0

∪m/2−1
j=0

((im + 2j + 1)hN , (im + 2j + 2)hN ],

a3
2, if x ∈ �N

3 ∩ ∪k−1
i=0

∪m/2−1
j=0

((im + 2j + 1)hN , (im + 2j + 2)hN ].

For s = 1, 2, 3 and 0 ≤ i ≤ k − 1 we set

N (x) =
{

ds,i
1 , if x ∈ �N

s ∩ ∪m/2−1
j=0

((im + 2j)hN , (im + 2j + 1)hN ],

ds,i
2 , if x ∈ �N

s ∩ ∪m/2−1
j=0

((im + 2j + 1)hN , (im + 2j + 2)hN ].

The ansatz for dN depends on the current interval, as V is x-
ependent.

Eqn. (11) now reads after setting 		3m
  : = m − 	 	1m 
 − 	 	2m 

or short

N(uN) = hN

k−1∑
i=0

3∑
s=1

		sm
 1
2

[V(ds,i
1 , as

1) + V(ds,i
2 , as

2)]

=
k−1∑
i=0

−
3∑

s=1

		sm

m

V0(ds,i, as). (14)

or m→ ∞ we  have 		sm 
/m → 	s, s = 1, 2. Consequently, using (12),

N(uN) →
∫ 1

0

V∗∗
0 (x, ∇u(x)) dx = El(u) as N → ∞.

e  still have to show that uN → u in L1(0, 1). If in the derivation of
qn. (14) we  formally set V(x, v) :≡ v (which is feasible), we obtain

1

0

∇uN(x) dx = 		1m

m

a1 + 		2m

m

a2 + (1 − 		1m

m

− 		2m

m

)a3

nd in the limit m→ ∞ as above

lim
→∞

∫ 1

0

∇uN(x) dx = 	1a1 + 	2a2 + (1 − 	1 − 	2)a3

∫ 1
= a =
0

∇u(x) dx, (15)

here Eqn. (13) has been used. By (15), uN → u in Lr(0, 1) for
≤ r ≤ ∞.
ommunications 45 (2012) 58– 63 61

We  still need to incorporate the boundary condition (9).  If uN is
the recovery sequence from above, we define

vN(x) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

uN(hN)
hN

x, x ∈ [0,  hN),

uN(x), x ∈ [hN, 1 − hN],

l − uN(1 − hN)
hN

(x − 1) + l, x ∈ (1 − hN, 1].

By construction, vN is continuous on [0, 1] with vN(0) = 0, vN(1) = l,
and lim

N→∞
(EN(uN) − EN(vN)) = 0, which shows that vN is the sought

recovery sequence. �

3. Numerical results

We  study in this section the numerical convergence of the
stress–strain response of finite mass-spring systems to the con-
tinuum limit of Eqn. (8).  We  analyze the overall loading–unloading
response of discrete systems composed of N = x + y springs, where
x denotes the number of undamaged springs, while y specifies
the number of damaged springs. For the spring constants, we use
the parameters k0 = 50.00 × 106 Pa, kb = −22.44 × 106 Pa, εa = 0.25,
ε∗ = 0.52, ı = 50.00 × 102 Pa, which correspond to �a = 16.67 MPa,
�c = 5.00 MPa, and 
�  = �c − �a = −11.67 MPa.

Fig. 1 shows the results for different x, y. The stress–strain curves
of the discrete microscopic chains follow sawtooth patterns which
alternate elastic and plastic steps. The plastic steps are character-
ized by fixed total strain and microscopic branch switching. Such
sawtooth-like responses converge to a perfectly plastic behavior
with a loading (� = �a) and an unloading plateau (� = �c) for increas-
ing values of N, as predicted by Eqn. (8).  It is worth observing that
the stress is zero for ε ≤ 1 − ˇ, while for ε > 1 −  ̌ that the system
is able to bear stresses � > 0. Fig. 1 shows, in addition, that the
energy dissipation capacity of the system (proportional to the area
enclosed by the stress–strain curve in a loading–unloading cycle)
reduces for decreasing ˇ, that is for increasing number of damaged
springs (bottom-right panel). Remarkably, the quantity 1 −  ̌ can
be regarded as the ‘activation’ strain of the system.

The dashed curves shown in Fig. 2 provide some data to allow for
a comparison between the continuum limit of the model given in
Section 2.1 (for kc /= k0) and an actual experiment. A CNT array
sample was  synthesized following the procedures discussed in
detail in Raney et al. (2011b). The mechanical response given in
Fig. 2 was obtained by compressing the material first to a moderate
strain of ε = 0.25 a total of three times (with the first such loading
indicated by the black dashed curve in Fig. 2), followed by com-
pression to a higher strain of ε = 0.6. The present model is able to
capture the occurrence and the magnitude of the shift to the right of
the stress–strain response that follows material preconditioning at
ε = 0.25, as a result of microstructural rearrangements (“damage”).
We were able to roughly approximate the experimental behavior
by assuming k0 = 3.91 × 106 Pa, kc = 12.4k0, ε∗ = 0.55, loading plateau
at � = 2.2 × 106 Pa, and unloading plateau at � = 0.2 × 106 Pa. Addi-
tionaly, we set  ̌ = 1 for the loading cycle from the virgin state,
and  ̌ = 0.925 for the loading cycle after the preconditioning at
ε = 0.25 (refer to the solid curves shown in Fig. 2 for the limiting
stress–strain response corresponding to such material parameters).
The most notable difference between the numerical predictions
of the present model and the experimental data is the perfectly
horizontal loading/unloading plateaux of the former and the signif-
icant sloping of these regions in the latter. This discrepancy arises

because the model discussed herein assumes a uniformity of mate-
rial properties (c.f. Assumptions (A1) and (A2)) along the height
of the CNT array as a simplification, when in fact it is known that
CNT arrays can have gradients in physical properties along their
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eight as a side effect of the synthesis process (Cao et al., 2005;
aney et al., 2011b). The use of “hardening” type plasticity would
llow us to more accurately predict the switching point from phase

 to phase b, and the actual dissipative behavior of CNT arrays. In
raternali et al. (2010) and Raney et al. (2011a) we have employed
oading and unloading hardening parameters to successfully model
his aspect of the experimental data, but here we do not repeat the
se of that approach for the sake of brevity.

. Concluding remarks
In this paper, for the first time a bistable-spring ansatz has been
roposed capable of incorporating damage in plastically deformed
aterials.
0 0.2 0.4 0.6 0.8 1

ss-spring chains for different total number of springs N.

We have shown that a suitable modification of the model
recently proposed by Fraternali et al. (2010) for CNT foams is able to
handle preconditioning-induced material damage, which is char-
acterized by an activation strain different from zero; a reduction
in the energy dissipation capacity; and permanent deformation.
The latter, in particular, coincides with the activation strain. The
new model allows us to extend the ‘transformational plasticity’
concept discussed by Puglisi and Truskinovsky (2005) from time-
independent hysteretic behavior to fatigue-type material damage.
It applies to a wide class of materials showing Mullins-like behav-
ior (Mullins, 1947), which includes besides CNT arrays rubber-like
and soft biological materials.

We address a multiscale formulation of the present model,
accounting for graded mechanical properties along the height of
the structure (Raney et al., 2011a), and the analytic computation
of the energy dissipated by the system in the continuum limit in
future work.
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